Advertisement

Autonomous Robots

, Volume 40, Issue 6, pp 1017–1039 | Cite as

Real-time path planning for long-term information gathering with an aerial glider

  • Joseph L. NguyenEmail author
  • Nicholas R. J. Lawrance
  • Robert Fitch
  • Salah Sukkarieh
Article

Abstract

Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.

Keywords

Path planning Information gathering Long-term  Energy constraint Unmanned aerial vehicle (UAV) 

Notes

Acknowledgments

This work is supported in part by the Australian Centre for Field Robotics and the New South Wales state government.

References

  1. Acevedo, J. J., Arrue, B. C., Maza, I., & Ollero, A. (2013a). Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. Journal of Intelligent and Robotic Systems, 70(1–4), 329–345.CrossRefGoogle Scholar
  2. Acevedo, J. J., Arrue, B. C., Maza, I., & Ollero, A. (2013b). Distributed approach for coverage and patrolling missions with a team of heterogeneous aerial robots under communication constraints. International Journal of Advanced Robotic Systems, 10(28), 13–28.Google Scholar
  3. Acevedo, J.J., Lawrance, N.R.J., Arrue, B.C., Sukkarieh, S., & Ollero, A. (2014). Persistent monitoring with a team of autonomous gliders using static soaring. In Proceedings of IEEE/RSJ IROS (pp. 4842–4848).Google Scholar
  4. Ákos, Z., Nagy, M., Leven, S., & Vicsek, T. (2010). Thermal soaring flight of birds and unmanned aerial vehicles. Bioinspiration and Biomimetics, 5(4), 045003.CrossRefGoogle Scholar
  5. Allen, M.J. (2005). Autonomous soaring for improved endurance of a small uninhabited air vehicle. In Proceedings of AIAA ASM.Google Scholar
  6. Allen, M.J., & Lin, V. (2007). Guidance and control of an autonomous soaring UAV. Technical Memorandum NASA/TM-2007-214611. NASA Dryden Flight Research Center.Google Scholar
  7. Andersson, K., Kaminer, I., Dobrokhodov, V., & Cichella, V. (2012). Thermal centering control for autonomous soaring: Stability analysis and flight test results. Journal of Guidance, Control, and Dynamics, 35(3), 963–975.CrossRefGoogle Scholar
  8. Applegate, D. L. (2006). The traveling salesman problem: A computational study. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  9. Benkoski, S. J., Monticino, M. G., & Weisinger, J. R. (1991). A survey of the search theory literature. Naval Research Logistics, 38(4), 469–494.CrossRefzbMATHGoogle Scholar
  10. Binney, J., Krause, A., & Sukhatme, G. S. (2013). Optimizing waypoints for monitoring spatiotemporal phenomena. The International Journal of Robotics Research, 32(8), 873–888.CrossRefGoogle Scholar
  11. Bishop, C. M. (2007). Pattern recognition and machine learning (information science and statistics). Berlin: Springer.Google Scholar
  12. Bourgault, F., Furukawa, T., & Durrant-Whyte, H.F. (2003). Coordinated decentralized search for a lost target in a bayesian world. In Proceedings of IEEE/RSJ IROS (pp. 48–53).Google Scholar
  13. Bourgault, F., Furukawa, T., & Durrant-Whyte, H.F. (2006). Optimal search for a lost target in a bayesian world. In Proceedings of FSR (pp. 209–222). Berlin: Springer.Google Scholar
  14. Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., et al. (2012). A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 1–43.CrossRefGoogle Scholar
  15. Chakrabarty, A., & Langelaan, J.W. (2009). Energy maps for long-range path planning for small- and micro- UAVs. In Proceedings of AIAA GNC.Google Scholar
  16. Chakrabarty, A., & Langelaan, J.W. (2010). Flight path planning for UAV atmospheric energy harvesting using heuristic search. In Proceedings of AIAA GNC.Google Scholar
  17. Chakrabarty, A., & Langelaan, J. W. (2011). Energy-based long-range path planning for soaring-capable unmanned aerial vehicles. Journal of Guidance, Control, and Dynamics, 34(4), 1002–1015.CrossRefGoogle Scholar
  18. Chekuri, C., & Pal, M. (2005). A recursive greedy algorithm for walks in directed graphs. In Proceedings of IEEE FOCS (pp. 245–253).Google Scholar
  19. Chung, J.J., Trujillo, M.A., & Sukkarieh, S. (2012). A new utility function for smooth transition between exploration and exploitation of a wind energy field. In Proceedings of IEEE/RSJ IROS (pp. 4999–5005).Google Scholar
  20. Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile robotics. Autonomous Robots, 31(4), 299–316.CrossRefGoogle Scholar
  21. Cobano, J.A., Alejo, D., Sukkarieh, S., Heredia, G., & Ollero, A. (2013a). Thermal detection and generation of collision-free trajectories for cooperative soaring uavs. In Proceedings of IEEE/RSJ IROS (pp. 2948–2954).Google Scholar
  22. Cobano, J.A., Alejo, S. D., Vera, Heredia, G., & Ollero, A. (2013b). Multiple gliding UAV coordination for static soaring in real time applications. In Proceedings of IEEE ICRA (pp 790–795).Google Scholar
  23. Cutler, M.J., McLain, T.M., Beard, R.W., & Capozzi, B. (2010). Energy harvesting and mission effectiveness for small unmanned aircraft. In Proceedings of AIAA GNC Google Scholar
  24. Depenbusch, N.T., & Langelaan, J.W. (2010). Receding horizon control for atmospheric energy harvesting by small UAVs. In Proceedings of AIAA GNC Google Scholar
  25. Depenbusch, N.T., & Langelaan, J.W. (2013). Coordinated mapping and exploration for autonomous soaring. In Proceedings of AIAA InfotechAerospace Conference Google Scholar
  26. Dobbie, J. M. (1968). A survey of search theory. Operations Research, 16(3), 525–537.CrossRefzbMATHGoogle Scholar
  27. Durrant-Whyte, H.F., Stevens, M., & Nettleton, E. (2001) Data fusion in decentralised sensing networks. In Proceedings of ICIF (pp. 302–307).Google Scholar
  28. Eagle, J. N., & Yee, J. R. (1990). An optimal branch-and-bound procedure for the constrained path, moving target search problem. Operations Research, 38(1), 110–114.MathSciNetCrossRefzbMATHGoogle Scholar
  29. Edwards, D., & Silverberg, L. M. (2010). Autonomous soaring: The Montague cross-country challenge. Journal of Aircraft, 47(5), 1763–1769.CrossRefGoogle Scholar
  30. Gan, S.K., Yang, K., & Sukkarieh, S. (2009). 3d path planning for a rotary wing uav using a gaussian process occupancy map. In Proceedings of ARAA ACRA.Google Scholar
  31. Gan, S. K., Fitch, R., & Sukkarieh, S. (2014). Online decentralized information gathering with spatial-temporal constraints. Autonomous Robots, 37(1), 1–25.CrossRefGoogle Scholar
  32. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of np-completeness. New York: W. H. Freeman & Co.zbMATHGoogle Scholar
  33. Jin, Y., Minai, A.A., & Polycarpou, M.M. (2003). Cooperative real-time search and task allocation in uav teams. In Proceedings of IEEE CDC (pp. 7–12).Google Scholar
  34. Kocsis, L., & Szepesvári, C. (2006). Bandit based monte-carlo planning. In Proceedings of ECML (pp. 282–293).Google Scholar
  35. Korner, F., Speck, R., Goktogan, A.H., & Sukkarieh, S. (2010). Autonomous airborne wildlife tracking using radio signal strength. In Proceedings of IEEE/RSJ IROS (pp. 107–112).Google Scholar
  36. Krause, A., & Golovin, D. (2012). Submodular function maximization. Tractability: Practical Approaches to Hard Problems, 3, 19.Google Scholar
  37. Kreucher, C.M., Morelande, M., Kastella, K., & Hero, A.O. (2005). Particle filtering for multitarget detection and tracking. In Proceedings of IEEE Aerospace Conference (pp. 2101–2116).Google Scholar
  38. Kreucher, C. M., Hero, A. O., Kastella, K. D., & Morelande, M. R. (2007). An information-based approach to sensor management in large dynamic networks. Proceedings of the IEEE, 95(5), 978–999.CrossRefGoogle Scholar
  39. Lai, T. L., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6(1), 4–22.MathSciNetCrossRefzbMATHGoogle Scholar
  40. Langelaan, J. W. (2009). Gust energy extraction for mini and micro uninhabited aerial vehicles. Journal of Guidance, Control, and Dynamics, 32(2), 464–473.CrossRefGoogle Scholar
  41. Lavis, B., & Furukawa, T. (2009). Hype: hybrid particle-element approach for recursive bayesian searching-and-tracking. Proceedings of RSS (p. 135).Google Scholar
  42. Lawrance, N.R.J. (2011). Autonomous soaring flight for unmanned aerial vehicles. PhD thesis, The University of Sydney.Google Scholar
  43. Lawrance, N. R. J., & Sukkarieh, S. (2011a). Autonomous exploration of a wind field with a gliding aircraft. Journal of Guidance, Control, and Dynamics, 34(3), 719–733.CrossRefGoogle Scholar
  44. Lawrance, N.R.J., & Sukkarieh, S. (2011b) Path planning for autonomous soaring flight in dynamic wind fields. In Proceedings of IEEE ICRA (pp. 2499–2505).Google Scholar
  45. Levine, D., Luders, B., & How, J.P. (2010). Information-rich path planning with general constraints using rapidly-exploring random trees. In Proceedings of AIAA Infotech Aerospace Conference.Google Scholar
  46. Mathworks (2013). MATLAB and simulink for technical computing (R2013b).Google Scholar
  47. Moravec, H. P. (1988). Sensor fusion in certainty grids for mobile robots. AI Magazine, 9(2), 61.Google Scholar
  48. Nguyen, J.L., Lawrance, N.R.J., Fitch, R., & Sukkarieh, S. (2013). Energy-constrained motion planning for information gathering with autonomous aerial soaring. In Proceedings of IEEE ICRA (pp. 3825–3831).Google Scholar
  49. Nguyen, J.L., Lawrance, N.R.J., & Sukkarieh, S. (2014). Nonmyopic planning for long-term information gathering with an aerial glider. In Proceedings of IEEE ICRA (pp. 6573–6578).Google Scholar
  50. Rayleigh, L. (1883). The soaring of birds. Nature, 27(701), 534–535.CrossRefGoogle Scholar
  51. Russell, S. J., & Norvig, P. (2010). Artificial intelligence—A modern approach. Upper Saddle River: Pearson Education.zbMATHGoogle Scholar
  52. Sato, H., & Royset, J. O. (2010). Path optimization for the resource-constrained searcher. Naval Research Logistics, 57(5), 422–440.MathSciNetzbMATHGoogle Scholar
  53. Sirio, G. (2013). ChibiOS/RT.Google Scholar
  54. Smith, O. J., Boland, N., & Waterer, H. (2012). Solving shortest path problems with a weight constraint and replenishment arcs. Computers and Operations Research, 39(5), 964–984.MathSciNetCrossRefzbMATHGoogle Scholar
  55. Stone, L. D. (1989). Theory of optimal search. Arlington, VA: Operations Research Society of America.Google Scholar
  56. Stone, L. D., Streit, R. L., Corwin, T. L., & Bell, K. L. (2013). Bayesian multiple target tracking. Norwood, MA: Artech House.zbMATHGoogle Scholar
  57. Stranders, R., Farinelli, A., Rogers, A., & Jennings, N. (2009). Decentralised coordination of mobile sensors using the max-sum algorithm. In Proceedings of IJCAI (pp. 299–304).Google Scholar
  58. Trummel, K. E., & Weisinger, J. R. (1986). Technical note the complexity of the optimal searcher path problem. Operations Research, 34(2), 324–327.MathSciNetCrossRefzbMATHGoogle Scholar
  59. Washburn, A. R. (1998). Branch and bound methods for a search problem. Naval Research Logistics, 45, 243–257.MathSciNetCrossRefzbMATHGoogle Scholar
  60. Wilson, D. B., Goktogan, A. H., & Sukkarieh, S. (2012). UAV rendezvous: From concept to flight test. In Proceedings of ARAA ACRA.Google Scholar
  61. Wilson, D. B., Goktogan, A. H., Sukkarieh, S. (2014). A vision based relative navigation framework for formation flight. In Proceedings of IEEE ICRA (pp. 4988–4995).Google Scholar
  62. Wong, E.M., Bourgault, F., & Furukawa, T. (2005). Multi-vehicle bayesian search for multiple lost targets. In Proceedings of IEEE ICRA (pp. 3169–3174).Google Scholar
  63. Yang, Y., Polycarpou, M. M., & Minai, A. A. (2007). Multi-uav cooperative search using an opportunistic learning method. Journal of Dynamic Systems, Measurement, and Control, 129(5), 716–728.CrossRefGoogle Scholar
  64. Yu, J., Schwager, M., & Rus, D. (2014). Correlated orienteering problem and its application to informative path planning for persistent monitoring tasks. In Procedings of IEEE/RSJ IROS (pp. 342–349).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Australian Centre for Field Robotics (ACFR)The University of SydneySydneyAustralia
  2. 2.Robotic Decision Making Laboratory (RDML)Oregon State UniversityCorvallisUSA

Personalised recommendations