Advertisement

Autonomous Robots

, Volume 40, Issue 3, pp 493–504 | Cite as

Whole-body hierarchical motion and force control for humanoid robots

  • Mingxing Liu
  • Ryan Lober
  • Vincent Padois
Article

Abstract

Robots acting in human environments usually need to perform multiple motion and force tasks while respecting a set of constraints. When a physical contact with the environment is established, the newly activated force task or contact constraint may interfere with other tasks. The objective of this paper is to provide a control framework that can achieve real-time control of humanoid robots performing both strict and non strict prioritized motion and force tasks. It is a torque-based quasi-static control framework, which handles a dynamically changing task hierarchy with simultaneous priority transitions as well as activation or deactivation of tasks. A quadratic programming problem is solved to maintain desired task hierarchies, subject to constraints. A generalized projector is used to quantitatively regulate how much a task can influence or be influenced by other tasks through the modulation of a priority matrix. By the smooth variations of the priority matrix, sudden hierarchy rearrangements can be avoided to reduce the risk of instability. The effectiveness of this approach is demonstrated on both a simulated and a real humanoid robot.

Keywords

Whole-body control Physical contact Torque-based control Humanoid robots 

Notes

Acknowledgments

This work was partially supported by the European Commission, within the CoDyCo Project (FP7-ICT-2011-9, No. 600716) and by the RTE company through the RTE/UPMC chair “Robotics Systems for field intervention in constrained environment” held by Vincent Padois.

References

  1. Abe, Y., da Silva, M., & Popović, J. (2007). Multiobjective control with frictional contacts. In Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation (pp. 249–258).Google Scholar
  2. Bouyarmane, K., & Kheddar, A. (2011). Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4414–4419). doi: 10.1109/IROS.2011.6094483.
  3. Collette, C., Micaelli, A., Andriot, C., & Lemerle, P. (2007). Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts. In 7th IEEE-RAS international conference on humanoid robots (pp. 81–88).Google Scholar
  4. Dietrich, A., Albu-Schaffer, A., & Hirzinger, G. (2012). On continuous null space projections for torque-based, hierarchical, multi-objective manipulation. In 2012 IEEE international conference on robotics and automation (ICRA) (pp. 2978–2985). doi: 10.1109/ICRA.2012.6224571.
  5. Escande, A., Mansard, N., & Wieber, P. B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International Journal of Robotics Research, 33, 1006.CrossRefGoogle Scholar
  6. Flacco, F., De Luca, A., & Khatib, O. (2012). Prioritized multi-task motion control of redundant robots under hard joint constraints. In 2012 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3970–3977). doi: 10.1109/IROS.2012.6385619.
  7. Hsu, P., Mauser, J., & Sastry, S. (1989). Dynamic control of redundant manipulators. Journal of Robotic Systems, 6(2), 133–148. doi: 10.1002/rob.4620060203.CrossRefzbMATHGoogle Scholar
  8. Jarquin, G., Escande, A., Arechavaleta, G., Moulard, T., Yoshida, E., & Parra-Vega, V. (2013). Real-time smooth task transitions for hierarchical inverse kinematics. In 13th IEEE-RAS international conference on humanoid robots (pp. 528–533). doi: 10.1109/HUMANOIDS.2013.7030024.
  9. Kanoun, O., Lamiraux, F., Wieber, P. B., Kanehiro, F., Yoshida, E., & Laumond, J. P. (2009). Prioritizing linear equality and inequality systems: Application to local motion planning for redundant robots. In IEEE international conference on robotics and automation (2009) (pp. 2939–2944).Google Scholar
  10. Keith, F., Wieber, P.-B., Mansard, N., & Kheddar, A. (2011). Analysis of the discontinuities in prioritized tasks-space control under discreet task scheduling operations. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3887–3892). doi: 10.1109/IROS.2011.6094706.
  11. Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3(1), 43–53.CrossRefGoogle Scholar
  12. Lee, J., Mansard, N., & Park, J. (2012). Intermediate desired value approach for task transition of robots in kinematic control. IEEE Transactions on Robotics, 28(6), 1260–1277. doi: 10.1109/TRO.2012.2210293.CrossRefGoogle Scholar
  13. Liu, M., Micaelli, A., Evrard, P., Escande, A., & Andriot, C. (2011). Interactive dynamics and balance of a virtual character during manipulation tasks. In IEEE international conference on robotics and automation (ICRA) (pp. 1676–1682).Google Scholar
  14. Liu, M., Micaelli, A., Evrard, P., Escande, A., & Andriot, C. (2012). Interactive virtual humans: A two-level prioritized control framework with wrench bounds. IEEE Transactions on Robotics, 28(6), 1309–1322. doi: 10.1109/TRO.2012.2208829.CrossRefGoogle Scholar
  15. Liu, M., Tan, Y., & Padois, V. (2015). Generalized hierarchical control. Autonomous Robots, 6, 1–15. doi: 10.1007/s10514-015-9436-1.Google Scholar
  16. Mansard, N., Remazeilles, A., & Chaumette, F. (2009). Continuity of varying-feature-set control laws. IEEE Transactions on Automatic Control, 54(11), 2493–2505. doi: 10.1109/TAC.2009.2031202.CrossRefMathSciNetGoogle Scholar
  17. Merlhiot, X., Le Garrec, J., Saupin, G., & Andriot, C. (2012). The xde mechanical kernel: Efficient and robust simulation of multibody dynamics with intermittent nonsmooth contacts. In The second joint international conference on multibody system dynamics.Google Scholar
  18. Mistry, M., Nakanishi, J., & Schaal, S. (2007). Task space control with prioritization for balance and locomotion. In IEEE/RSJ international conference on intelligent robots and systems, IROS 2007 (pp. 331–338), doi: 10.1109/IROS.2007.4399595.
  19. Petrič, T., & Žlajpah, L. (2013). Smooth continuous transition between tasks on a kinematic control level: Obstacle avoidance as a control problem. Robotics and Autonomous Systems, 61(9), 948–959. doi: 10.1016/j.robot.2013.04.019.CrossRefGoogle Scholar
  20. Saab, L., Mansard, N., Keith, F., Fourquet, J.Y., & Soueres, P. (2011). Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints. In IEEE international conference on robotics and automation (ICRA) (pp. 1091–1096).Google Scholar
  21. Saab, L., Ramos, O., Keith, F., Mansard, N., Soueres, P., & Fourquet, J. Y. (2013). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29(2), 346–362. doi: 10.1109/TRO.2012.2234351.CrossRefGoogle Scholar
  22. Salini, J., Padois, V., & Bidaud, P. (2011). Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 1283–1290). doi: 10.1109/ICRA.2011.5980202.
  23. Schittkowski,. (1986). QLD: A FORTRAN code for quadratic programming, users guide, Technical Report. Bayreuth: Mathematisches Institut, Universität Bayreuth.Google Scholar
  24. Sentis, L., & Khatib, O. (2004). Prioritized multi-objective dynamics and control of robots in human environments. In 4th IEEE/RAS international conference on humanoid robots (Vol. 2, pp. 764–780). doi: 10.1109/ICHR.2004.1442684.
  25. Stephens, B., & Atkeson, C. (2010). Dynamic balance force control for compliant humanoid robots. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1248–1255).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.UPMC Univ Paris 06, UMR 7222, Institut des Systèmes Intelligents et de Robotique (ISIR)Sorbonne UniversitésParisFrance
  2. 2.CNRS, UMR 7222, ISIRParisFrance

Personalised recommendations