Advertisement

Autonomous Robots

, Volume 39, Issue 3, pp 429–444 | Cite as

Communication constrained task allocation with optimized local task swaps

  • Lantao Liu
  • Nathan Michael
  • Dylan A. Shell
Article

Abstract

Communication constraints dictated by hardware often require a multi-robot system to make decisions and take actions locally. Unfortunately, local knowledge may impose limits that ultimately impede global optimality in a decentralized optimization problem. This paper enhances a recent anytime optimal assignment method based on a task-swap mechanism, redesigning the algorithm to address task allocation problems in a decentralized fashion. We propose a fully decentralized approach that allows local search processes to execute concurrently while minimizing interactions amongst the processes, needing neither global broadcast nor a multi-hop communication protocol. The formulation is analyzed in a novel way using tools from group theory and optimization duality theory to show that the convergence of local searching processes is related to a shortest path routing problem on a graph subject to the network topology. Simulation results show that this fully decentralized method converges quickly while sacrificing little optimality.

Keywords

Decentralized task allocation Communication constraint Task swaps Permutation group 

References

  1. Balinski, M. L., & Gomory, R. E. (1964). A primal method for the assignment and transportation problems. Management Science, 10(3), 578–593.CrossRefGoogle Scholar
  2. Bertsekas, D. P. (1979). A distributed algorithm for the assignment problem. Lab. for Information and Decision Systems Report, MIT.Google Scholar
  3. Burkard, R. E., Dell’Amico, M., & Martello, S. (2009). Assignment problems. New York: Society for Industrial and Applied Mathematics.zbMATHCrossRefGoogle Scholar
  4. Chaimowicz, L., Campos, M. F. M., & Kumar, V. (2002). Dynamic role assignment for cooperative robots. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (pp. 293–298).Google Scholar
  5. Chechetka, A., & Sycara, K. (2006). No-commitment branch and bound search for distributed constraint optimization. In Proceedings of Fifth International Joint Conference on Autonomous Agents and Multi-Agent Systems (pp. 1427–1429).Google Scholar
  6. Derigs, U. (1985). The shortest augmenting path method for solving assignment problems—motivation and computational experience. Annals of Operations Research, 4, 57–102.MathSciNetCrossRefGoogle Scholar
  7. Dias, M. B., Zlot, R., Kalra, N., & Stentz, A. (2006). Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE, 94(7), 1257–1270.CrossRefGoogle Scholar
  8. Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM, 19(2), 248–264.zbMATHCrossRefGoogle Scholar
  9. Farinelli, A., Iocchi, L., Nardi, D., & Ziparo, V. A. (2006). Assignment of dynamically perceived tasks by token passing in multi-robot systems. In Proc. of the IEEE, Special Issue on Multi-robot Systems.Google Scholar
  10. George, D. (1963). Linear Programming and Extensions. Princeton: Princeton University Press.Google Scholar
  11. Gerkey, B. P., & Matarić, M. J. (2002). Sold!: Auction methods for multirobot coordination. EEE Transactions on Robotics and Automation, 18(5), 758–768.CrossRefGoogle Scholar
  12. Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 939–954.CrossRefGoogle Scholar
  13. Giordani, S., Lujak, M., & Martinelli, F. (2010). A distributed algorithm for the multi-robot task allocation problem. LNCS: Trends in Applied Intelligent Systems, 6096, 721–730.Google Scholar
  14. Goldberg, A. V., & Kennedy, R. (1995). An efficient cost scaling algorithm for the assignment problem. Mathematical Programming, 71(2), 153–177.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Golfarelli, M., Maio, D., & Rizzi, S. (1997). Multi-agent path planning based on task-swap negotiation. In Proc. UK Planning and Scheduling Special Interest Group Workshop (pp. 69–82).Google Scholar
  16. Hirayama, K., & Yokoo, M. (1997). Distributed partial constraint satisfaction problem. In Principles and Practice of Constraint Programming (pp. 222–236).Google Scholar
  17. Korsah, G. A., Stentz, A., & Dias, M. B. (2013). A comprehensive taxonomy for multi-robot task allocation. International Journal of Robotics Research, 32(12), 1495–1512.CrossRefGoogle Scholar
  18. Kuhn, H. W. (1955). The Hungarian method for the assignment poroblem. Naval Research Logistic Quarterly, 2, 83–97.CrossRefGoogle Scholar
  19. Lagoudakis, M. G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A., Koenig, S., et al. (2005). Auction-based multi-robot routing. In Robotics: Science and Systems.Google Scholar
  20. Lemaire, T., Alami, R., & Lacroix, S. (2004). A distributed tasks allocation scheme in multi-UAV context. In Proc. ICRA (pp. 3622–3627).Google Scholar
  21. Liu, L., & Shell, D. A. (2012a). Multi-robot formation morphing through matching graph. In International Symposium on Distributed Autonomous Robotic Systems (DARS).Google Scholar
  22. Liu, L., & Shell, D. A. (2012b). A distributable and computation-flexible assignment algorithm: From local task swapping to global optimality. In Proceedings of Robotics: Science and Systems.Google Scholar
  23. Liu, L., & Shell, D. A. (2013). An anytime assignment algorithm: From local task swapping to global optimality. Autonomous Robots, 35, 271–286.CrossRefGoogle Scholar
  24. Liu, L., Michael, N., & Shell, D. (2014). Fully decentralized task swaps with optimized local searching. In Proceedings of Robotics: Science and Systems, Berkeley, USA, July 2014.Google Scholar
  25. Michael, N., Zavlanos, M.M., Kumar, V., & Pappas, G.J. (2008). Distributed multi-robot task assignment and formation control. In IEEE Intl. Conf on Robotics and Automation (pp. 128–133).Google Scholar
  26. Modi, P. J., Shen, W.-M., Tambe, M., & Yokoo, M. (2006). Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence, 161, 149–180.MathSciNetCrossRefGoogle Scholar
  27. Parker, L. E. (2008). Multiple mobile robot systems. In Bruno Siciliano & Oussama Khatib (Eds.), Handbook of robotics, chapter 40. New York: Springer.Google Scholar
  28. Pentico, D. W. (2007). Assignment problems: A golden anniversary survey. European Journal of Operational Research, 176, 774–793.zbMATHMathSciNetCrossRefGoogle Scholar
  29. Petcu, A., & Faltings, B. (2005). A scalable method for multiagent constraint optimization. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI’05 (pp. 266–271).Google Scholar
  30. Rotman, J. J. (1995). An introduction to the theory of groups (Vol. 148). New York: Springer Science & Business Media.zbMATHGoogle Scholar
  31. Sariel, S., & Balch, T. (2006). A distributed multi-robot cooperation framework for real time task achievement. In Proceedings of Distributed Autonomous Robotic Systems Google Scholar
  32. Stone, P., Kaminka, G. A., Kraus, S., & Rosenschein, J. S. (2010). Ad Hoc Autonomous Agent Teams: collaboration without pre-coordination. In Proc. AAAI Google Scholar
  33. Sung, C., Ayanian, N., & Rus, D. (2013). Improving the performance of multi-robot systems by task switching. In IEEE International Conference on Robotics and Automation (pp. 2984–2991).Google Scholar
  34. Tang, F., & Parker, L.E. (2007). A complete methodology for generating multi-robot task solutions using ASyMTRe-D and market-based task allocation. In Proc. of IEEE International Conference on Robotics and Automation (ICRA’93) (pp. 3351–3358).Google Scholar
  35. Turpin, M., Mohta, K., Michael, N., & Kumar, V. (2013). Goal assignment and trajectory planning for large teams of aerial robots. In Proceedings of Robotics: Science and Systems, Berlin, Germany, June 2013.Google Scholar
  36. Turpin, M., Michael, N., & Kumar, V. (2014). CAPT: Concurrent assignment and planning of trajectories for multiple robots. International Journal of Robotics Research, 33(1), 98–112.CrossRefGoogle Scholar
  37. Wawerla, J., & Vaughan, R. T. (2009). Robot task switching under diminishing returns. In Proceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems, IROS’09 (pp. 5033–5038).Google Scholar
  38. Yeoh, W., Felner, A., & Koenig, S. (2008). Bnb-adopt: An asynchronous branch-and-bound dcop algorithm. In In Proceedings of AAMAS (pp. 591–598).Google Scholar
  39. Zavlanos, M.M., Spesivtsev, L., & Pappas, G. J. (2008). A distributed auction algorithm for the assignment problem. In Proceedings of the IEEE Conference on Decision and Control (pp. 1212–1217), Cancun, Mexico, December 2008.Google Scholar
  40. Zheng, X., & Koenig, S. (2009). K-swaps: Cooperative negotiation for solving task-allocation problems. In Proc. IJCAI (pp. 373–378).Google Scholar
  41. Zlot, R., & Stentz, A. (2006). Market-based multirobot coordination for complex tasks. The International Journal of Robotic Research, 25(1), 73–101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Computer Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations