Autonomous Robots

, Volume 40, Issue 3, pp 429–455 | Cite as

Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot

  • Scott Kuindersma
  • Robin Deits
  • Maurice Fallon
  • Andrés Valenzuela
  • Hongkai Dai
  • Frank Permenter
  • Twan Koolen
  • Pat Marion
  • Russ Tedrake
Article

Abstract

This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.

Keywords

Humanoid Legged locomotion Optimization State estimation 

Notes

Acknowledgments

We gratefully acknowledge the support of the Defense Advanced Research Projects Agency via Air Force Research Laboratory award FA8750-12-1-0321, the Office of Naval Research via awards N00014-12-1-0071 and N00014-10-1-0951, NSF awards IIS-0746194 and IIS-1161909, MIT, and MIT CSAIL. Robin Deits is supported by the Fannie and John Hertz Foundation. We are also grateful to Boston Dynamics and Carnegie Robotics for their support during the DRC. We would like to thank the members of the Robot Locomotion Group and the MIT DRC Team for their insights and supporting contributions to this work. A special thanks to Matt Antone for developing LIDAR calibration and terrain map software that our experiments relied upon.

References

  1. Abe, Y., da Silva, M., & Popović, J. (2007). Multiobjective control with frictional contacts. In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation (pp. 249–258). Switzerland: Aire-la-Ville.Google Scholar
  2. Ames, A. D. (2012). First steps toward underactuated human-inspired bipedal robotic walking. In Proceedings of the IEEE international conference on robotics and automation (ICRA). St. Paul, MN.Google Scholar
  3. Ames, A. D. (2013). Human-inspired control of bipedal robotics via control Lyapunov functions and quadratic programs. In Hybrid systems: Computation and control.Google Scholar
  4. Ames, A. D., Galloway, K., & Grizzle, J. W. (2012). Control Lyapunov functions and hybrid zero dynamics. In Proceedings of the 51st IEEE conference on decision and control. HI: Maui.Google Scholar
  5. Bartlett, R. A., Wächter, A., & Biegler, L. T. (2000). Active set vs. interior point strategies for model predictive control. In Proceedings of the American control conference. Chicago, IL.Google Scholar
  6. Baudouin, L., Perrin, N., Moulard, T., Lamiraux, F., Stasse, O., & Yoshida, E. (2011). Real-time replanning using 3d environment for humanoid robot. In IEEE-RAS international conference on humanoid robots (pp. 584–589). Bled, Slovnie.Google Scholar
  7. Bemporad, A., & Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3), 407–427. doi:10.1016/S0005-1098(98)00178-2.CrossRefMathSciNetMATHGoogle Scholar
  8. Bertsekas, D. P. (1995). Dynamic programming and optimal control. Belmont, MA: Athena Scientific.MATHGoogle Scholar
  9. Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.CrossRefGoogle Scholar
  10. Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21(2), 193–207.CrossRefMATHGoogle Scholar
  11. Bloesch, M., Hutter, M., Hoepflinger, M. A., Leutenegger, S., Gehring, C., Remy, C. D., & Siegwart, R. (2012). State estimation for legged robots—consistent fusion of leg kinematics and IMU. In Robotics: Science and systems (RSS) Google Scholar
  12. Bortz, J. (1971). A new mathematical formulation for strapdown inertial navigation. IEEE Transactions on Aerospace and Electronic Systems, AES–7(1), 61–66.CrossRefGoogle Scholar
  13. Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATHGoogle Scholar
  14. Bry, A., Bachrach, A., & Roy, N. (2012). State estimation for aggressive flight in GPS-denied environments using onboard sensing. In IEEE International conference on robotics and automation (ICRA) (pp. 1–8).Google Scholar
  15. Chestnutt, J., Kuffner, J., Nishiwaki, K., & Kagami, S. (2003). Planning biped navigation strategies in complex environments. In Proceedings of IEEE international conference on humanoid robots, Karlsruhe, Germany.Google Scholar
  16. Chestnutt, J. E., Nishiwaki, K., Kuffner, J., & Kagami, S. (2007). An adaptive action model for legged navigation planning. In IEEE-RAS international conference on humanoid robots (pp. 196–202).Google Scholar
  17. Collette, C., Micaelli, A., Andriot, C., & Lemerle, P. (2007) Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts. In Proceedings of the IEEE/RAS international conference on humanoid robots (pp. 81–88).Google Scholar
  18. Dai, H., Valenzuela, A., & Tedrake, R. (2014). Whole-body motion planning with centroidal dynamics and full kinematics. In Proceedings of the IEEE-RAS international conference on humanoid robots.Google Scholar
  19. Dalibard, S., Khoury, A. E., Lamiraux, F., Nakhaei, A., Taïx, M., & Laumond, J. P. (2013). Dynamic walking and whole-body motion planning for humanoid robots: An integrated approach. International Journal of Robotics Research, 32(9–10), 1089–1103.CrossRefGoogle Scholar
  20. Deits, R., & Tedrake, R. (2015). Efficient mixed-integer planning for UAVs in cluttered environments. In IEEE international conference on robotics and automation (ICRA).Google Scholar
  21. Deits, R. L. H., & Tedrake, R. (2014). Computing large convex regions of obstacle-free space through semidefinite programming. In Proceedings of the eleventh international workshop on the Algorithmic Foundations of Robotics, Istanbul.Google Scholar
  22. Deits, R. L. H., & Tedrake, R. (2014). Footstep planning on uneven terrain with mixed-integer convex optimization. In Proceedings of the IEEE-RAS international conference on humanoid robots.Google Scholar
  23. Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo localization for mobile robots. In IEEE international conference on robotics and automation (ICRA).Google Scholar
  24. Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., et al. (2015). An architecture for online affordance-based perception and whole-body planning. Journal of Field Robotics, 32, 229–254.CrossRefGoogle Scholar
  25. Fallon, M. F., Antone, M., Roy, N., & Teller, S. (2014). Drift-free humanoid state estimation fusing kinematic, inertial and LIDAR sensing. In Proceedings of IEEE international conference on humanoid robots Google Scholar
  26. Feng, S., Xinjilefu, X., Huang, W., & Atkeson, C. G. (2013). 3D walking based on online optimization. In Proceedings of the IEEE-RAS international conference on humanoid robots, Atlanta, GA.Google Scholar
  27. Ferreau, H., Bock, H., & Diehl, M. (2008). An online active set strategy to overcome the limitations of explicit MPC. International Journal of Robust and Nonlinear Control, 18(8), 816–830.CrossRefMathSciNetMATHGoogle Scholar
  28. Garimort, J., & Hornung, A. (2011). Humanoid navigation with dynamic footstep plans. In 2011 IEEE international conference on robotics and automation (ICRA) (pp. 3982–3987). IEEE.Google Scholar
  29. Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review, 47(1), 99–131.CrossRefMathSciNetMATHGoogle Scholar
  30. Gurobi Optimization, Inc. (2014). Gurobi optimizer reference manual. Retrieved, from http://www.gurobi.com/.
  31. Herdt, A., Diedam, H., Wieber, P. B., Dimitrov, D., Mombaur, K., & Diehl, M. (2010). Online walking motion generation with automatic foot step placement. Advanced Robotics, 24(5–6), 719–737.CrossRefGoogle Scholar
  32. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., & Schaal, S. (2013). Momentum-based balance control for torque-controlled humanoids. CoRR, abs/1305.2042.Google Scholar
  33. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., & Schaal, S. (2014). Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In Proceeedings of 2014 IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  34. Hornung, A., Wurm, K. M., & Bennewitz, M. (2010). Humanoid robot localization in complex indoor environments. In IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, Taiwan.Google Scholar
  35. IBM Corp. (2010). User’s manual for CPLEX. Retrieved, from http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r2/topic/com.ibm.common.doc/doc/banner.htm.
  36. Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., et al. (2015). Team IHMC’s lessons learned from the DARPA Robotics Challenge trials. Journal of Field Robotics, 32, 192–208.CrossRefGoogle Scholar
  37. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Resolved momentum control: Humanoid motion planning based on the linear and angular momentum. In Proceedings of intelligent robots and systems (IROS).Google Scholar
  38. Koolen, T., Smith, J., Thomas, G., Bertrand, S., Carff, J., Mertins, N., et al. (2013). Summary of team ihmc s virtual robotics challenge entry. In Proceedings of the IEEE-RAS international conference on humanoid robots. Atlanta, GA: IEEE.Google Scholar
  39. Koolen, T., Smith, J., Thomas, G., Bertrand, S., Carff, J., Mertins, N., et al. (2013). Summary of team IHMC’s virtual robotics challenge entry. In Proceedings of the IEEE-RAS international conference on humanoid robots, Atlanta, GA.Google Scholar
  40. Koyanagi, K., Hirukawa, H., Hattori, S., Morisawa, M., Nakaoka, S., Harada, K., & Kajita, S. (2008). A pattern generator of humanoid robots walking on a rough terrain using a handrail. In IEEE/RSJ international conference on intelligent robots and systems, 2008, IROS 08 (pp. 2617–2622).Google Scholar
  41. Kudoh, S., Komura, T., & Ikeuchi, K. (2002). The dynamic postural adjustment with the quadratic programming method. In International conference on intelligent robots and systems (IROS) (pp. 2563–2568).Google Scholar
  42. Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., & Inoue, H. (2001). Footstep planning among obstacles for biped robots. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (vol. 1, pp. 500–505). Maui, Hawaii.Google Scholar
  43. Kuffner, J. J., Nishiwaki, K., Kagami, S., Inaba, M., & Inoue, H. (2003). Online footstep planning for humanoid robots. IEEE International Conference on Robotics and Automation, 1, 932–937. doi:10.1109/ROBOT.2003.1241712.Google Scholar
  44. Kuindersma, S., Permenter, F., & Tedrake, R. (2014). An efficiently solvable quadratic program for stabilizing dynamic locomotion. In Proceedings of the international conference on robotics and automation (ICRA), Hong Kong, China.Google Scholar
  45. Lee, S. H., & Goswami, A. (2012). A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Autonomous Robots, 33, 339–414.CrossRefGoogle Scholar
  46. Lien, J. M., & Amato, N. M. (2004). Approximate convex decomposition of polygons. Proceedings of the twentieth annual symposium on computational geometry (pp. 17–26).Google Scholar
  47. Lingas, A. (1982). The power of non-rectilinear holes. In M. Nielsen & E. M. Schmidt (Eds.), Automata, languages and programming. Lecture Notes in Computer Science (Vol. 140, pp. 369–383). Berlin Heidelberg: Springer. Retrieved, from http://link.springer.com/chapter/10.1007/BFb0012784.
  48. Macchietto, A., Zordan, V., & Shelton, C. R. (2009). Momentum control for balance. In Transactions on Graphics/ACM SIGGRAPH.Google Scholar
  49. Manchester, I. R., Tobenkin, M. M., Levashov, M., & Tedrake, R. (2011). Regions of attraction for hybrid limit cycles of walking robots. In Proceedings of the 18th IFAC world congress.Google Scholar
  50. Michel, P., Chestnutt, J., Kuffner, J., & Kanade, T. (2005). Vision-guided humanoid footstep planning for dynamic environments. IEEE-RAS international conference on humanoid robots (pp. 13–18).Google Scholar
  51. Mombaur, K. D. (2009). Using optimization to create self-stable human-like running. Robotica, 27(3), 321–330.CrossRefGoogle Scholar
  52. Mosek ApS. (2014). The MOSEK optimization software. Retrieved, from http://www.mosek.com/
  53. Neo, E., Yokoi, K., Kajita, S., & Tanie, K. (2007). Whole-body motion generation integrating operator’s intention and robot’s autonomy in controlling humanoid robots. IEEE Transactions on Robotics, 23(4), 763–775. doi:10.1109/TRO.2007.903818.CrossRefGoogle Scholar
  54. Nishiwaki, K., Chestnutt, J., & Kagami, S. (2011). Autonomous navigation of a humanoid robot on unknown rough terrain. In Proceedings of the international symposium on robotics research.Google Scholar
  55. Orin, D. E., & Goswami, A. (2008). Centroidal momentum matrix of a humanoid robot: Structure and properties. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Nice, France.Google Scholar
  56. Pollard, N. S., & Reitsma, P. S. A. (2001). Animation of humanlike characters: Dynamic motion filtering with a physically plausible contact model. In Yale workshop on adaptive and learning systems.Google Scholar
  57. Posa, M., Cantu, C., & Tedrake, R. (2014). A direct method for trajectory optimization of rigid bodies through contact. International Journal of Robotics Research, 33(1), 69–81.CrossRefGoogle Scholar
  58. Rotella, N., Bloesch, M., Righetti, L., & Schaal, S. (2014). State estimation for a humanoid robot. CoRR, 1402.5450. IROS Submission.Google Scholar
  59. Saab, L., Ramos, O., Mansard, N., Fourquet, J. Y., & Souères, P. (2011). Generic dynamic motion generation with multiple unilateral constraints. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, San Fransisco, USA.Google Scholar
  60. Saab, L., Ramos, O. E., Keith, F., Mansard, N., Souères, P., & Fourquet, J. Y. (2013). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29(2), 346–362.CrossRefGoogle Scholar
  61. Shkolnik, A., Levashov, M., Manchester, I. R., & Tedrake, R. (2011). Bounding on rough terrain with the littledog robot. The International Journal of Robotics Research (IJRR), 30(2), 192–215.CrossRefGoogle Scholar
  62. Stasse, O., Davison, A. J., Sellaouti, R., & Yokoi, K. (2006). Real-time 3D SLAM for a humanoid robot considering pattern generator information. In IEEE/RSJ international conference on intelligent robots and systems (IROS).Google Scholar
  63. Stephens, B. J. (2011). State estimation for force-controlled humanoid balance using simple models in the presence of modeling error. In IEEE international conference on robotics and automation (ICRA) (pp. 3994–3999).Google Scholar
  64. Tedrake, R. (2014). Drake: A planning, control, and analysis toolbox for nonlinear dynamical systems. Retrieved, from http://drake.mit.edu.
  65. Tedrake, R. (2014). Underactuated robotics: Algorithms for walking, running, swimming, flying, and manipulation (course notes for mit 6.832). Retrieved in Fall, 2014 from http://people.csail.mit.edu/russt/underactuated/.
  66. Wang, Y., & Boyd, S. (2011). Fast evaluation of quadratic control-Lyapunov policy. IEEE Transactions on Control Systems Technology, 19(4), 939–946.CrossRefGoogle Scholar
  67. Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., & Burgard, W. (2010). OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems. In Proceedings of the ICRA 2010 workshop on best practice in 3D perception and modeling for mobile manipulation, Anchorage, AK, USA.Google Scholar
  68. Xinjilefu, X., Feng, S., Huang, W., & Atkeson, C. (2014). Decoupled state estimation for humanoids using full-body dynamics. In IEEE international conference on robotics and automation (ICRA), Hong Kong, China.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Scott Kuindersma
    • 1
  • Robin Deits
    • 1
  • Maurice Fallon
    • 1
  • Andrés Valenzuela
    • 1
  • Hongkai Dai
    • 1
  • Frank Permenter
    • 1
  • Twan Koolen
    • 1
  • Pat Marion
    • 1
  • Russ Tedrake
    • 1
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations