Autonomous Robots

, Volume 40, Issue 3, pp 473–491 | Cite as

Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid

  • Alexander Herzog
  • Nicholas Rotella
  • Sean Mason
  • Felix Grimminger
  • Stefan Schaal
  • Ludovic Righetti
Article

Abstract

Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.

Keywords

Whole-body control Multi-contact interaction Hierarchical control Inverse dynamics Force control Humanoid 

Supplementary material

Supplementary material 1 (mp4 16300 KB)

References

  1. Ayusawa, K., Venture, G., & Nakamura, Y. (2014). Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems. The International Journal of Robotics Research, 33, 446–468.CrossRefGoogle Scholar
  2. Bloesch, M., Hutter, M., Hoepflinger, M. H., Remy, C. D., Gehring, C., & Siegwart, R. (2012). State estimation for legged robots consistent fusion of leg kinematics and IMU. Sydney: Robotics: science and systems (R:SS).Google Scholar
  3. Boaventura, T., Focchi, M., Frigerio, M., Buchli, J., Semini, C., Medrano-Cerda, G.A., & Caldwell, D. (2012). On the role of load motion compensation in high-performance force control. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  4. Boaventura, T., Semini, C., Buchli, J., Frigerio, M., Focchi, M., & Caldwell, D. (2012). Dynamic torque control of a hydraulic quadruped robot. In IEEE international conference on robotics and automation.Google Scholar
  5. Cheng, G., Sang-Ho, H., Ude, A., Morimoto, J., Hale, J.G., Hart, J., Nakanishi, J., Bentivegna, D., Hodgins, J., Atkeson, C., Mistry, M., Schaal, S., & Kawato, M. (2008). CB: Exploring neuroscience with a humanoid research platform. In IEEE international conference on robotics and automation.Google Scholar
  6. de Lasa, M., Mordatch, I., & Hertzmann, A. (2010). Feature-based locomotion controllers. ACM Transactions on Graphics, 29(3).Google Scholar
  7. Escande, A., Mansard, N., & Wieber, P. B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International Journal of Robotics Research, 33(7), 1006–1028.CrossRefGoogle Scholar
  8. Faraji, S., Pouya, S., Atkeson, C., & Ijspeert, A. (2014). Versatile and robust 3d walking with a simulated humanoid robot (atlas): a model predictive control approach. In IEEE international conference on robotics and automation.Google Scholar
  9. Feng, S., Xinjilefu, X., Huang, W., & Atkeson, C. (2014). 3D walking based on online optimization. In IEEE international conference on robotics and automation.Google Scholar
  10. Goldfarb, D., & Idnani, A. (1983). A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27(1), 1–33.CrossRefMathSciNetMATHGoogle Scholar
  11. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., & Schaal, S. (2013). Momentum-based balance control for torque-controlled humanoids. http://arxiv.org/abs/1305.2042v1.
  12. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., & Schaal, S. (2014). Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  13. Hutter, M., Hoepflinger, M.A., Gehring, C., Bloesch, M., Remy, C.D., & Siegwart, R. (2012). Hybrid operational space control for compliant legged systems. Sydney: Robotics: science and systems (R:SS).Google Scholar
  14. Hyon, S. H., Hale, J. G., & Cheng, G. (2007). Full-body compliant human-humanoid interaction: Balancing in the presence of unknown external forces. IEEE Transactions on Robotics, 23(5), 884–898.CrossRefGoogle Scholar
  15. Jarquin, G., Escande, A., Arechavaleta, G., Moulard, T., Yoshida, E., & Parra-Vega, V. (2013). Real-time smooth task transitions for hierarchical inverse kinematics. In IEEE-RAS international conference on humanoid robots.Google Scholar
  16. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003) Resolved momentum control: Humanoid motion planning based on the linear and angular momentum. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  17. Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., & Schaal, S. (2011). Learning, planning, and control for quadruped locomotion over challenging terrain. The International Journal of Robotics Research, 30(2), 236–258.CrossRefGoogle Scholar
  18. Kanoun, O., Lamiraux, F., & Wieber, P. B. (2011). Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task. IEEE Transactions on Robotics, 27(4), 785–792.CrossRefGoogle Scholar
  19. Kuindersma, S., Permenter, F., & Tedrake, R. (2014). An efficiently solvable quadratic program for stabilizing dynamic locomotion. In IEEE international conference on robotics and automation.Google Scholar
  20. Lee, S.H., & Goswami, A. (2010). Ground reaction force control at each foot: A momentum-based humanoid balance controller for non-level and non-stationary ground. In IEEE/RSJ international conference on intelligent robots and systems (pp. 3157–3162).Google Scholar
  21. Lee, S. H., & Goswami, A. (2012). A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Autonomous Robots, 33, 399–414.CrossRefGoogle Scholar
  22. Mansard, N. (2012). A dedicated solver for fast operational-space inverse dynamics. In IEEE international conference on robotics and automation.Google Scholar
  23. Mason, S., Righetti, L., & Schaal, S. (2014). Full dynamics lqr control of a humanoid robot: An experimental study on balancing and squatting. In IEEE-RAS international conference on humanoid robots.Google Scholar
  24. Mistry, M., Schaal, S., & Yamane, K. (2009). Inertial parameter estimation of floating base humanoid systems using partial force sensing. In IEEE-RAS international conference on humanoid robots.Google Scholar
  25. Moro, F., Gienger, M., Goswami, A., Tsagarakis, N., & Caldwell, D. (2013). An attractor-based whole-body motion control (wbmc) system for humanoid robots. In IEEE-RAS international conference on humanoid robots.Google Scholar
  26. Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. The International Journal of Robotics Research, 6, 3–15.CrossRefGoogle Scholar
  27. Orin, D.E., & Goswami, A. (2008). Centroidal momentum matrix of a humanoid robot: Structure and properties. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  28. Ott, C., Roa, M.A., & Hirzinger, G. (2011) Posture and balance control for biped robots based on contact force optimization. In IEEE-RAS international conference on humanoid robots.Google Scholar
  29. Pratt, J., Koolen, T., De Boer, T., Rebula, J., Cotton, S., Carff, J., et al. (2012). Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid. The International Journal of Robotics Research, 31(10), 1117–1133.CrossRefGoogle Scholar
  30. Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., & Schaal, S. (2013). Optimal distribution of contact forces with inverse-dynamics control. The International Journal of Robotics Research, 32(3), 280–298.CrossRefGoogle Scholar
  31. Righetti, L., Buchli, J., Mistry, M., & Schaal, S. (2011) Control of legged robots with optimal distribution of contact forces. In: 11th IEEE-RAS international conference on humanoid robots (pp. 318–324).Google Scholar
  32. Rotella, N., Bloesch, M., Righetti, L., & Schaal, S. (2014). State estimation for a humanoid robot. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  33. Saab, L., Ramos, O., Mansard, N., Soueres, P., & Fourquet, J. Y. (2013). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29, 346–362.CrossRefGoogle Scholar
  34. Salini, J., Padois, V., & Bidaud, P. (2011) Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions. In IEEE international conference on robotics and automation.Google Scholar
  35. Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 2, 505–518.CrossRefGoogle Scholar
  36. Stephens, B.J., & Atkeson, C.G. (2010). Dynamic balance force control for compliant humanoid robots. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  37. Urata, J., Nshiwaki, K., Nakanishi, Y., Okada, K., Kagami, S., & Inaba, M. (2012). Online walking pattern generation for push recovery and minimum delay to commanded change of direction and speed. In IEEE/RSJ international conference on intelligent robots and systems.Google Scholar
  38. Vaillant, J., Kheddar, A., Audren, H., Keith, F., Brossette, S., Kaneko, K., Morisawa, M., Yoshida, E., & Kanehiro, F. (2014) Vertical ladder climbing by the HRP-2 humanoid robot. In Humanoids 2014 14th IEEE-RAS international conference on humanoid robots (pp. 671–676).Google Scholar
  39. Wensing, P., & Orin, D. (2013). Generation of dynamic humanoid behaviors through task-space control with conic optimization. In IEEE international conference on robotics and automation.Google Scholar
  40. Wieber, P. (2006). Fast motions in biomechanics and robotics (pp. 411–425)., Holonomy and nonholonomy in the dynamics of articulated motion Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alexander Herzog
    • 1
  • Nicholas Rotella
    • 2
  • Sean Mason
    • 2
  • Felix Grimminger
    • 1
  • Stefan Schaal
    • 1
    • 2
  • Ludovic Righetti
    • 1
    • 2
  1. 1.Autonomous Motion DepartmentMax-Planck Institute Intelligent SystemsTübingenGermany
  2. 2.Computational Learning and Motor Control LabUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations