Autonomous Robots

, Volume 40, Issue 2, pp 361–381 | Cite as

Probabilistic stable motion planning with stability uncertainty for articulated vehicles on challenging terrains

  • Mohammad NorouziEmail author
  • Jaime Valls Miro
  • Gamini Dissanayake


A probabilistic stable motion planning strategy applicable to reconfigurable robots is presented in this paper. The methodology derives a novel statistical stability criterion from the cumulative distribution of a tip-over metric. The measure is dynamically updated with imprecise terrain information, localization and robot kinematics to plan safety-constrained paths which simultaneously allow the widest possible visibility of the surroundings by simultaneously assuming highest feasible vantage robot configurations. The proposed probabilistic stability metric allows more conservative poses through areas with higher levels of uncertainty, while avoiding unnecessary caution in poses assumed at well-known terrain sections. The implementation with the well known grid based A* algorithm and also a sampling based RRT planner are presented. The validity of the proposed approach is evaluated with a multi-tracked robot fitted with a manipulator arm and a range camera using two challenging elevation terrains data sets: one obtained whilst operating the robot in a mock-up urban search and rescue arena, and the other from a publicly available dataset of a quasi-outdoor rover testing facility.


Probabilistic path planning Uncertainty analysis Tip-over stability Mechanical reconfiguration Rescue robotics 


  1. Berg, J. V. D., Abbeel, P., & Goldberg, K. (2011). Lqg-mp: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research, 30(7), 895–913.CrossRefGoogle Scholar
  2. Besseron, G., Grand, C., Amar, F.B., & Bidaud, P. (2008). Decoupled control of the high mobility robot hylos based on a dynamic stability margin. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 22–23). Nice, France.Google Scholar
  3. Brooks, A., Makarenko, A., Williams, S., & Durrant-Whyte, H. (2006). Parametric POMDPs for planning in continuous state spaces. Robotics and Autonomous Systems, 54(11), 887–897.CrossRefGoogle Scholar
  4. Candido, S., Davidson, J., & Hutchinson, S. (2010). Exploiting domain knowledge in planning for uncertain robot systems modeled as pomdps. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 3596–3603). Alaska, USA.Google Scholar
  5. Coelho, P., & Nunes, U. (2005). Path-following control of mobile robots in presence of uncertainties. IEEE Transactions on Robotics, 21(2), 252–261.CrossRefGoogle Scholar
  6. Freitas, G., Gleizer, G., Lizarralde, F., & Hsu, L. (2010). Kinematic reconfigurability control for an environmental mobile robot operating in the amazon rain forest. Journal of Field Robotics, 27(2), 197–216.Google Scholar
  7. Gill, R., Kulic, D., & Nielsen, C. (2013). Robust path following for robot manipulators. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3412–3418). Tokyo, Japan.Google Scholar
  8. Greenberg, M. (1998). Advanced engineering mathematics, 2/E. New Delhi: Pearson Education India.Google Scholar
  9. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRefGoogle Scholar
  10. Iagnemma, K., & Dubowsky, S. (2004). Mobile robot in rough terrain (Vol. 12). Berlin: Springer Tracts in Advanced Robotics.Google Scholar
  11. Iagnemma, K., Rzepniewski, A., Dubowsky, S., & Schenker, P. (2003). Control of robotic vehicles with actively articulated suspensions in rough terrain. Autonomous Robots, 14(1), 5–16.CrossRefzbMATHGoogle Scholar
  12. Julier, S., & Uhlmann, J. (2004). Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3), 401–422.CrossRefGoogle Scholar
  13. Keiji, N., Seiga, K., Yoshito, O., Kazuki, O., Kazuya, Y., Satoshi, T., et al. (2013). Emergency response to the nuclear accident at the fukushima daiichi nuclear power plants using mobile rescue robots. Journal of Field Robotics, 30(1), 44–63.CrossRefGoogle Scholar
  14. LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning. Technical report, Iowa State University, Dept. of Computer Science.Google Scholar
  15. LaValle, S. (2006). Planning algorithms. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  16. Liang, D., Zongquan, D., Haibo, G., Junlong, G., Dapeng, Z., & Karl, I. (2013). Experimental study and analysis of the wheels’ steering mechanics for planetary exploration wheeled mobile robots moving on deformable terrain. The International Journal of Robotics Research, 32(6), 712–743.CrossRefGoogle Scholar
  17. Liangjun, Z., & Dinesh, M. (2008). An efficient retraction-based rrt planner. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 3743–3750). Pasadena, USA.Google Scholar
  18. Liu, Y., & Liu, G. (2010). Interaction analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes. IEEE/ASME Transactions on Mechatronics, 15(4), 623–635.CrossRefGoogle Scholar
  19. Matthijs, S., & Nikos, V. (2005). Perseus: Randomized point-based value iteration for pomdps. Journal of Artificial Intelligence Research, 24, 195–220.Google Scholar
  20. Norouzi, M., Miro, J.V., & Dissanayake, G. (2013a). Planning stable and efficient paths for articulated mobile robots on challenging terrains. In Proceedings of Australasian Conference on Robotics and Automation (p. 10). Sydney, Australia: UNSW.Google Scholar
  21. Norouzi, M., Miro, J.V., & Dissanayake, G. (2013b). A statistical approach for uncertain stability analysis of mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 191–196). Karlsruhe, Germany.Google Scholar
  22. Norouzi, M., Miro, J.V., Dissanayake, G., & Vidal-Calleja, T. (2014). Path planning with stability uncertainty for articulated mobile vehicles in challenging environments. In IEEE/RSJ Proceedings of International Conference on Intelligent Robots and Systems (pp. 1748–1753). Chicago, Illinois, USA.Google Scholar
  23. Papadopoulos, E., & Rey, D. (1996). A new measure of tipover stability margin for mobile manipulators. In Proceedings of IEEE International Conference on Robotics and Automation (vol. 4, pp. 3111–3116). Minneapolis, USA.Google Scholar
  24. Papadopoulos, E., & Rey, D. (2000). The force angle measure of tipover stability margin for mobile manipulatiors. Vehicle System Dynamics, 33(1), 29–48.CrossRefGoogle Scholar
  25. Parks, P. (1966). Liapunov redesign of model reference adaptive control systems. IEEE Transactions on Automatic Control, 11(3), 362–367.CrossRefGoogle Scholar
  26. Roan, P., Burmeister, A., Rahimi, A., Holz, K., & Hooper, D. (2010). Real-world validation of three tipover algorithms for mobile robots. In Proceedings of IEEE International Conference on Robotics and Automation (pp. 4431–4436). Anchorage, Alaska, USA.Google Scholar
  27. Rubinstein, & Reuven, (1981). Simulation and the Monte Carlo method. New York: Wiley.CrossRefzbMATHGoogle Scholar
  28. Santosh, H., Heijden, V. D., Wam, G., Frits, V. E., Alfred, S., & Cajo, T. B. (2014). Laser range finder model for autonomous navigation of a robot in a maize field using a particle filter. Computers and Electronics in Agriculture, 100, 41–50.CrossRefGoogle Scholar
  29. Sebastian, T., Wolfram, B., & Dieter, F. (2005). Probabilistic robotics. Cambridge: MIT Press.zbMATHGoogle Scholar
  30. SeungBeum, S., JunHo, C., ChangHyun, C., YeonSub, J., Seung-Yeup, H., & Sungchul, K. (2014). Mine detecting robot system. In Field and Service Robotics (pp. 97–109). Springer.Google Scholar
  31. Siegwart, R., & Nourbakhsh, I. R. (2004). Introduction to autonomous mobile robotos. Cambridge: The MIT press.Google Scholar
  32. Smith, R. (2005). Open dynamics engine. Accessed 2011.
  33. Toit, N. D., & Burdick, J. (2012). Robot motion planning in dynamic, uncertain environments. IEEE Transactions on Robotics, 28(1), 101–115.CrossRefGoogle Scholar
  34. Tong, C. H., Gingras, D., Larose, K., Barfoot, T. D., & Dupuis, E. (2013). The canadian planetary emulation terrain 3D mapping dataset. The International Journal of Robotics Research, 32(4), 389–395.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mohammad Norouzi
    • 1
    Email author
  • Jaime Valls Miro
    • 1
  • Gamini Dissanayake
    • 1
  1. 1.Faculty of Engineering and ITUniversity of Technology, Sydney (UTS)UltimoAustralia

Personalised recommendations