Autonomous Robots

, Volume 40, Issue 2, pp 245–265 | Cite as

Decentralized multi-robot encirclement of a 3D target with guaranteed collision avoidance

Article

Abstract

We present a control framework for achieving encirclement of a target moving in 3D using a multi-robot system. Three variations of a basic control strategy are proposed for different versions of the encirclement problem, and their effectiveness is formally established. An extension ensuring maintenance of a safe inter-robot distance is also discussed. The proposed framework is fully decentralized and only requires local communication among robots; in particular, each robot locally estimates all the relevant global quantities. We validate the proposed strategy through simulations on kinematic point robots and quadrotor UAVs, as well as experiments on differential-drive wheeled mobile robots.

Keywords

Distributed robot systems Motion control Multi-robot decentralized control Encirclement Escorting  Entrapment 

Supplementary material

10514_2015_9450_MOESM1_ESM.mp4 (20.1 mb)
Supplementary material 1 (mp4 20540 KB)

References

  1. Antonelli, G., Arrichiello, F., & Chiaverini, S. (2008). The entrapment/escorting mission: An experimental study using a multirobot system. IEEE Robotics & Automation Magazine, 15(1), 22–29.CrossRefGoogle Scholar
  2. Ceccarelli, N., Di Marco, M., Garulli, A., & Giannitrapani, A. (2008). Collective circular motion of multi-vehicle systems. Automatica, 44(12), 3025–3035.CrossRefMathSciNetMATHGoogle Scholar
  3. Censi, A., Franchi, A., Marchionni, L., & Oriolo, G. (2013). Simultaneous maximum-likelihood calibration of odometry and sensor parameters. IEEE Transactions on Robotics, 29(2), 475–492.CrossRefGoogle Scholar
  4. Fliess, M., Lévine, J., Martin, P., & Rouchon, P. (1995). Flatness and defect of nonlinear systems: Introductory theory and examples. International Journal of Control, 61(6), 1327–1361.CrossRefMathSciNetMATHGoogle Scholar
  5. Franchi, A., Oriolo, G., & Stegagno, P. (2010a). Probabilistic mutual localization in multi-agent systems from anonymous position measures. In 49th IEEE Conference on Decision and Control (pp.6534–6540). Atlanta, GA.Google Scholar
  6. Franchi, A., Stegagno, P., Di Rocco, M., & Oriolo, G. (2010b). Distributed target localization and encirclement with a multi-robot system. In 7th IFAC Symposium on Intelligent Autonomous Vehicles, Lecce, Italy.Google Scholar
  7. Franchi, A., Secchi, C., Ryll, M., Bülthoff, H. H., & Robuffo Giordano, P. (2012). Shared control: Balancing autonomy and human assistance with a group of quadrotor UAVs. IEEE Robotics & Automation Magazine, Special Issue on Aerial Robotics and the Quadrotor Platform, 19(3), 57–68.CrossRefGoogle Scholar
  8. Franchi, A., Oriolo, G., & Stegagno, P. (2013). Mutual localization in multi-robot systems using anonymous relative measurements. The International Journal of Robotics Research, 32(11), 1302–1322.CrossRefGoogle Scholar
  9. Gazi, V., & Passino, K. M. (2002). Stability analysis of social foraging swarms: combined effects of attractant/repellent profiles. 41th IEEE Conference on Decision and Control (pp. 2848–2853). Las Vegas, NV.Google Scholar
  10. Gonçalves, M. M., Pimenta, L. C. A., & Pereira, G. A. S. (2011). Coverage of curves in 3D with swarms of nonholonomic aerial robots. In 18th IFAC World Congress (pp. 10367–10372). Milano, Italy.Google Scholar
  11. Grabe, V., Riedel, M. Bülthoff, H. H., Robuffo Giordano, P., & Franchi, A. (2013). The TeleKyb framework for a modular and extendible ROS-based quadrotor control. In 6th European Conference on Mobile Robots (pp. 19–25). Barcelona, Spain.Google Scholar
  12. Gray, R. M. (2006). Toeplitz and circulant matrices: A review. Foundations and Trends in Technology: Now Publishers. ISBN 9781933019239.Google Scholar
  13. Gui, B., Dai, L., & Cimini, L. J. (2009). Routing strategies in multihop cooperative networks. IEEE Transaction on Wireless Communications, 8(2), 843–855.CrossRefGoogle Scholar
  14. Gurvits, L., Shorten, R., & Mason, O. (2007). On the stability of switched positive linear systems. IEEE Transaction on Automatic Control, 52(6), 1099–1103.CrossRefMathSciNetGoogle Scholar
  15. Hara, S., Kim, T. H., Hori, Y. (2008). Distributed formation control for target-enclosing operations based on a cyclic pursuit strategy. In 17th IFAC World Congress (pp. 6602–6607). Seoul, South Korea.Google Scholar
  16. Hsieh, M. A., Kumar, V., & Chaimowicz, L. (2008). Decentralized controllers for shape generation with robotic swarms. Robotica, 26(5), 691–701.CrossRefGoogle Scholar
  17. Isidori, A. (1995). Nonlinear control systems (3rd ed.). New York: Springer. ISBN 3540199160.CrossRefMATHGoogle Scholar
  18. Jönsson, U. T., & Kao, C. Y. (2010). Consensus of heterogeneous linear agents applied to a formation control problem. 49th IEEE Conference on Decision and Control (pp. 743–1546). Atlanta, GAGoogle Scholar
  19. Kawakami, H., & Namerikawa, T. (2009). Cooperative target-capturing strategy for multi-vehicle systems with dynamic network topology. In 2009 American Control Conference (pp. 635–640). St. Louis, MO.Google Scholar
  20. Lächele, J., Franchi, A., Bülthoff, H. H., & Robuffo Giordano, P. (2012). SwarmSimX: Real-time simulation environment for multi-robot systems. In I. Noda, N. Ando, D. Brugali, and J.J. Kuffner (Ed.), 3rd International Conference on Simulation, Modeling, and Programming for Autonomous Robots, vol. 7628 of Lecture Notes in Computer Science (pp. 375–387). Springer, New York.Google Scholar
  21. Lan, Y., & Lin, Z. (2010). A distributed reconfigurable control law for escorting and patrolling missions using teams of unicycles. 49th IEEE Conference on Decision and Control (pp. 5456–5461). Atlanta, GA.Google Scholar
  22. Lee, D. J., Franchi, A., Son, H. I., Bülthoff, H. H., & Robuffo, P. (2013). Giordano. Semi-autonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles. IEEE/ASME Trans. on Mechatronics, Focused Section on Aerospace. Mechatronics, 18(4), 1334–1345.CrossRefGoogle Scholar
  23. Leonard, N. E., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control of groups. 40th IEEE Conference on Decision and Control (pp. 2968–2973). Orlando, FL.Google Scholar
  24. Lin, Z., Francis, B., & Maggiore, M. (2005). Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Transaction on Automatic Control, 50(1), 121–127.CrossRefMathSciNetGoogle Scholar
  25. Mas, I., Li, S., Acain, J., Kitts, C. (2009). Entrapment/escorting and patrolling missions in multi-robot cluster space control. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5855–5861). St. Louis, MO.Google Scholar
  26. Mellish, R., & Paley, D. (2010). Backstepping control design for motion coordination of self-propelled vehicles. 49th IEEE Conference on Decision and Control (pp. 5468–5473). Atlanta, GA.Google Scholar
  27. Mistler, V., Benallegue, A., & M’Sirdi, N. K. (2001). Exact linearization and noninteracting control of a 4 rotors helicopter via dynamic feedback. In 10th IEEE International Symposium on Robots and Human Interactive Communications (pp. 586–593). Bordeaux, Paris, France.Google Scholar
  28. Moreau, L. (2005). Stability of multiagent systems with time-dependent communication links. IEEE Transaction on Automatic Control, 50(2), 169–182.CrossRefMathSciNetGoogle Scholar
  29. Moshtagh, N., Michael, N., Jadbabaie, A., & Daniilidis, K. (2009). Vision-based, distributed control laws for motion coordination of nonholonomic robots. IEEE Transaction on Robotics, 25(4), 851–860.CrossRefGoogle Scholar
  30. Van Nieuwstadt, M. J., & Murray, R. M. (1998). Real-time trajectory generation for differentially flat systems. International Journal on Robust and Nonlinear Control, 8, 995–1020.CrossRefMATHGoogle Scholar
  31. Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transaction on Automatic Control, 49(9), 1520–1533.CrossRefMathSciNetGoogle Scholar
  32. Oriolo, G., De Luca, A., & Vendittelli, M. (2002). WMR control via dynamic feedback linearization: Design, implementation, and experimental validation. IEEE Transaction on Control Systems Technology, 10(6), 835–852.CrossRefGoogle Scholar
  33. Pavone, M., & Frazzoli, E. (2007). Decentralized policies for geometric pattern formation. In 2007 American Control Conference (pp. 3949–3954). New York, NY.Google Scholar
  34. Ren, W. (2007a). Consensus strategies for cooperative control of vehicle formations. IET Control Theory & Applications, 1(2), 505–512.CrossRefGoogle Scholar
  35. Ren, W. (2007b). Multi-vehicle consensus with a time-varying reference state. Systems & Control Letters, 56(7–8), 474–483.CrossRefMathSciNetMATHGoogle Scholar
  36. Sabattini, L., Secchi, C., Fantuzzi, C., & de Macedo Possamai, D. (2010). Tracking of closed-curve trajectories for multi-robot systems. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 6089–6094). Taipei, Taiwan.Google Scholar
  37. Sabattini, L., Secchi, C., & Fantuzzi, C. (2013). Closed-curve path tracking for decentralized systems of multiple mobile robots. Journal of Intelligent & Robotics Systems, 71(1), 109–123.CrossRefGoogle Scholar
  38. Sadowska, Kostic, D., Van de Wouw, N., Huijberts, H., & Nijmeijer, H. (2012). Distributed formation control of unicycle robots. In 2012 IEEE International Conference on Robotics and Automation (pp. 1564–1569). St. Paul, MN.Google Scholar
  39. Sepulchre, R., Paley, D. A., & Leonard, N. E. (2007). Stabilization of planar collective motion: All-to-all communication. IEEE Transaction on Automatic Control, 52(5), 811–824.CrossRefMathSciNetGoogle Scholar
  40. Sepulchre, R., Paley, D. A., & Leonard, N. E. (2008). Stabilization of planar collective motion with limited communication. IEEE Transaction on Automatic Control, 53(3), 706–719.CrossRefMathSciNetGoogle Scholar
  41. Shames, I., Fidan, B., & Anderson, B. D. O. (2010). Close target reconnaissance with guaranteed collision avoidance. International Journal on Robust and Nonlinear Control.Google Scholar
  42. Turpin, M., Michael, N., & Kumar, V. (2012). Decentralized formation control with variable shapes for aerial robots. In 2012 IEEE International Conference on Robotics and Automation (pp. 23–30). St. Paul, MN.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Antonio Franchi
    • 1
    • 2
  • Paolo Stegagno
    • 3
  • Giuseppe Oriolo
    • 4
  1. 1.CNRS, LAASToulouseFrance
  2. 2.Univ de Toulouse, LAASToulouseFrance
  3. 3.Max Planck Institute for Biological CyberneticsTübingenGermany
  4. 4.Dipartimento di Ingegneria Informatica, Automatica e GestionaleSapienza Università di RomaRomeItaly

Personalised recommendations