Advertisement

Autonomous Robots

, Volume 40, Issue 1, pp 159–173 | Cite as

Spatial adaption of robot trajectories based on laplacian trajectory editing

  • Thomas Nierhoff
  • Sandra Hirche
  • Yoshihiko Nakamura
Article

Abstract

Assuming that a robot trajectory is given from a high-level planning or learning mechanism, it needs to be adapted to react to dynamic environment changes. In this article we propose a novel approach to deform trajectories while keeping their local shape similar, which is based on the discrete Laplace–Beltrami operator. The approach can be readily extended and covers multiple deformation techniques including fixed waypoints that must be passed, positional constraints for collision avoidance or a cooperative manipulation scheme for the coordination of multiple robots. Due to its low computational complexity it allows for real-time trajectory deformation both on local and global scale and online adaptation to changed environmental constraints. Simulations illustrate the straightforward combination of the proposed approach with other established trajectory-related methods like artificial potential fields or prioritized inverse kinematics. Experiments with the HRP-4 humanoid successfully demonstrate the applicability in complex daily-life tasks.

Keywords

Robotics Trajectory adaption Trajectory retargeting Trajectory similarity Local trajectory properties Multiresolution approach Obstacle avoidance 

Notes

Acknowledgments

This work was partially supported by the EU Horizon2020 project RAMCIP, under Grant Agreement No. 643433 and by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (S), 2008-2012, 20220001, “Establishing Human-Machine Communication through Kinesiology and Linguistics Integration” (PI: Y. Nakamura).

Supplementary material

Supplementary material 1 (mp4 106809 KB)

References

  1. Arun, K. S., Huang, T. S., & Blostein, S. D. (1987). Least-squares fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5), 698–700.CrossRefGoogle Scholar
  2. Billard, A., Calinon, S., Dillmann, R., & Schaal, S. (2008). Robot programming by demonstration. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 1371–1394). Berlin: Springer.CrossRefGoogle Scholar
  3. Botsch, M., & Kobbelt, L. (2004a). An intuitive framework for real-time freeform modeling. ACM Transactions on Graphics, 23(3), 630–634.CrossRefGoogle Scholar
  4. Botsch, M., & Kobbelt, L. (2004b). A remeshing approach to multiresolution modeling. In ACM Special Interest Group on Graphics and Interactive Techniques (pp. 185–192).Google Scholar
  5. Brock, O., & Khatib, O. (2002). Elastic strips: A framework for motion generation in human environments. International Journal of Robotics Research, 21(12), 1031–1052.CrossRefGoogle Scholar
  6. Desbrun, M., Meyer, M., Schröder, P., & Barr, A.H. (1999). Implicit fairing of irregular meshes using diffusion and curvature flow. In ACM Special Interest Group on Graphics and Interactive Techniques (pp. 317–324).Google Scholar
  7. Dierkes, U., Hildebrandt, S., & Sauvigny, F. (2010). Minimal surfaces (p. 339). Berlin: Springer.Google Scholar
  8. Do-Carmo, M. P. (1976). Differential geometry of curves and surfaces. Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  9. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., & Stuetzle, W. (1995). Multiresolution analysis of arbitrary meshes. In ACM Special Interest Group on Graphics and Interactive Techniques (pp. 173–182).Google Scholar
  10. Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 1688–1703.Google Scholar
  11. Hilario, L., Montés, N., Mora, M.C., & Falcó, A. (2011). Real-time bézier trajectory deformation for potential fields planning methods. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1567–1572).Google Scholar
  12. Hoffmann, H., Pastor, P., Park, D.H., & Schaal, S. (2009). Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In IEEE International Conference on Robotics and Automation (pp. 2587–2592).Google Scholar
  13. Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, 30(7), 846–894.CrossRefGoogle Scholar
  14. Karni, Z., & Gotsman, C. (2000). Spectral compression of mesh geometry. In ACM Special Interest Group on Graphics and Interactive Techniques (pp. 279–286).Google Scholar
  15. Kilner, J., Hamilton, A Fd C, & Blakemore, S. J. (2007). Interference effect of observed human movement on action is due to velocity profile of biological motion. Social Neuroscience, 2(3–4), 158–66.CrossRefGoogle Scholar
  16. Kobbelt, L., Bareuther, T., & Seidel, H. P. (2000). Multiresolution shape deformations for meshes with dynamic vertex connectivity. Computer Graphics Forum, 19(3), 249–260.CrossRefGoogle Scholar
  17. Kupferberg, A., Glasauer, S., Huber, M., Rickert, M., Knoll, A., & Brandt, T. (2011). Biological movement increases acceptance of humanoid robots as human partners in motor interaction. AI & Society, 26(4), 339–345.CrossRefGoogle Scholar
  18. Lavalle, S. M. (1998). Rapidly-exploring random trees: A new tool for path planning. Technical report No. (pp. 98–11)Google Scholar
  19. Lee, D., & Ott, C. (2011). Incremental kinesthetic teaching of motion primitives using the motion refinement tube. Autonomous Robots, 31(2–3), 115–131.CrossRefGoogle Scholar
  20. Levine, S., & Koltun, V. (2012). Continuous inverse optimal control with locally optimal examples. In International Conference on Machine Learning.Google Scholar
  21. Levy, B. (2006). Laplace-beltrami eigenfunctions towards an algorithm that “understands” geometry. In Shape Modeling International (pp. 13).Google Scholar
  22. Lipman, Y., Sorkine, O., Levin, D.C.O.D., Rössl, C., & Seidel, H.P. (2004). Differential coordinates for interactive mesh editing. In Shape Modeling International (pp. 181–190).Google Scholar
  23. Lipman, Y., Sorkine, O., Alexa, M., Cohen-Or, D., Levin, D., Rössl, C., et al. (2005). Laplacian framework for interactive mesh editing. International Journal of Shape Modeling, 11(1), 43–62.CrossRefGoogle Scholar
  24. Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.MathSciNetCrossRefGoogle Scholar
  25. Meyer, M., Desbrun, M., Schröder, P., & Barr, A. H. (2002). Visualization and mathematics (pp. 35–57)., Discrete differential-geometry operators for triangulated 2-manifolds Berlin: Springer.Google Scholar
  26. Mombaur, K., Olivier, A. H., & Crétual, A. (2013). Modeling, simulation and optimization (Vol. 18, pp. 165–179)., Forward and inverse optimal control of bipedal running Berlin: Springer.Google Scholar
  27. Nakamura, Y. (1991). Advanced robotics—redundancy and optimization. Reading, MA: Addison-Wesley Publishing.Google Scholar
  28. Nierhoff, T., & Hirche, S. (2012). Fast trajectory replanning using laplacian mesh optimization. In IEEE International Conference on Control, Automation, Robotics and Vision.Google Scholar
  29. Nierhoff, T., Hirche, S., & Nakamura, Y. (2013). Multiresolution laplacian trajectory replanning. In Proceedings of the Annual Conference of RSJ.Google Scholar
  30. Nierhoff, T., Hirche, S., & Nakamura, Y. (2014). Sampling-based trajectory imitation in constrained environments using laplacian-rrt*. In IEEE/RSJ International Conference on Intelligent Robots and Systems.Google Scholar
  31. Nierhoff, T., Hirche, S., & Nakamura, Y. (2013) Variable positional constraints for laplacian trajectory editing. In DGR-Tage.Google Scholar
  32. Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In IEEE International Conference on Robotics and Automation (pp. 1293–1298).Google Scholar
  33. Pham, Q.C. (2011). Fast trajectory correction for nonholonomic mobile robots using affine transformations. In Robotics: Science and Systems.Google Scholar
  34. Pham, Q.C., & Nakamura, Y. (2013). A new trajectory deformation algorithm based on affine transformations. In International Joint Conference on Artificial Intelligence.Google Scholar
  35. Quinlan, S., & Khatib, O. (1993). Elastic bands: Connecting path planning and control. In IEEE International Conference on Robotics and Automation (pp. 802–807).Google Scholar
  36. Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., & Spagnuolo, M. (2009). Discrete laplace-beltrami operators for shape analysis and segmentation. Computational Geometry, 33(3), 381–390.Google Scholar
  37. Schaal, S. (2006). Dynamic movement primitives—A framework for motor control in humans and humanoid robotics. Adaptive Motion of Animals and Machines (pp. 261–280).Google Scholar
  38. Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., et al. (2014). Motion planning with sequential convex optimization and convex collision checking. International Journal of Robotics Research, 33(9), 1251–1270.CrossRefGoogle Scholar
  39. Shoemake, K. (1985). Animating rotation with quaternion curves. ACM International Conference on Computer Graphics and Interactive Techniques, 19, 245–254.CrossRefGoogle Scholar
  40. Sorkine, O., & Alexa, M. (2007). As-rigid-as-possible surface modeling. In Eurographics Symposium on Geometry Processing (pp. 109–116).Google Scholar
  41. Sorkine, O., & Cohen-Or, D. (2004). Least-squares meshes. In Shape Modeling International (pp. 191–199).Google Scholar
  42. Strichartz, R. S. (1983). Analysis of the laplacian on the complete riemannian manifold. Journal of Functional Analysis, 52(1), 48–79.zbMATHMathSciNetCrossRefGoogle Scholar
  43. Taubin, G. (1995). A signal processing approach to fair surface design. In ACM Special Interest Group on Graphics and Interactive Techniques (pp. 351–358).Google Scholar
  44. Umeyama, S. (1991). Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4), 376–380.CrossRefGoogle Scholar
  45. Wardetzky, M., Mathur, S., Kälberer, F., & Grinspun, E. (2007). Discrete laplace operators: No free lunch. In Eurographics Symposium on Geometry Processing (pp. 33–37).Google Scholar
  46. Yamane, K., & Nakamura, Y. (2003). Natural motion animation through constraining and deconstraining at will. IEEE Transactions on Visualization and Computer Graphics, 9, 352–360.CrossRefGoogle Scholar
  47. Zhang, H., van Kaick, O., & Dyer, R. (2010). Spectral mesh processing. Computer Graphics Forum, 29(6), 1865–1894.CrossRefGoogle Scholar
  48. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., et al. (2005). Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics, 24(3), 496–503.CrossRefGoogle Scholar
  49. Zucker, M., Ratliff, N., Dragan, A., Pivtoraiko, M., Klingensmith, M., Dellin, C., et al. (2013). Chomp: Covariant hamiltonian optimization for motion planning. International Journal of Robotics Research, 32, 1164–1193.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Chair of Information-oriented ControlTechnische Universität MünchenMunichGermany
  2. 2.Department of Mechano InformaticsUniversity of TokyoTokyoJapan

Personalised recommendations