Autonomous Robots

, Volume 40, Issue 1, pp 17–31 | Cite as

Generalized hierarchical control

  • Mingxing LiuEmail author
  • Yang Tan
  • Vincent Padois


Multi-objective control systems for complex robots usually have to handle multiple prioritized tasks. Most existing hierarchical control techniques handle either strict task priorities by using null-space projectors or a sequence of quadratic programs; or non strict task priorities by using a weighting strategy. This paper proposes a novel approach to handle both strict and non-strict priorities of an arbitrary number of tasks. It can achieve multiple priority rearrangements simultaneously. A generalized projector, which makes it possible to completely project a task into the null-space of a set of tasks, while partially projecting it into the null-space of some other tasks, is developed. This projector can be used to perform priority transitions and task insertion or deletion. The control input is computed by solving one quadratic programming problem, where generalized projectors are adopted to maintain a task hierarchy, and equality or inequality constraints can be implemented. The effectiveness of this approach is demonstrated on a simulated robotic manipulator in a dynamic environment.


Redundant robots Task hierarchy Priority switching Dynamics Torque-based control 



We would like to thank the reviewers for their insightful comments on the paper. This work was partially supported by the European Commission, within the CoDyCo project (FP7-ICT-2011-9, No. 600716) and by the RTE company through the RTE/UPMC chair Robotics Systems for field intervention in constrained environments held by Vincent Padois.

Supplementary material

Supplementary material 1 (mp4 43780 KB)


  1. Abe, Y., da Silva, M., & Popović, J. (2007). Multiobjective control with frictional contacts. In Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation (pp. 249–258).Google Scholar
  2. Aghili, F. (2005). A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: Applications to control and simulation. IEEE Transactions on Robotics, 21(5), 834–849. doi: 10.1109/TRO.2005.851380.CrossRefGoogle Scholar
  3. Andersson, J., Kesson, J., & Diehl, M. (2012). Casadi—A symbolic package for automatic differentiation and optimal control. In Recent advances in algorithmic differentiation. Google Scholar
  4. Baerlocher, P., & Boulic, R. (1998). Task-priority formulations for the kinematic control of highly redundant articulated structures. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 323–329). doi: 10.1109/IROS.1998.724639.
  5. Bouyarmane, K., & Kheddar, A. (2011). Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4414–4419). doi: 10.1109/IROS.2011.6094483.
  6. Chang, K. S., & Khatib, O. (1999). Efficient algorithm for extended operational space inertia matrix. In IEEE/RSJ international conference on intelligent robots and systems, IEEE (Vol. 1, pp. 350–355).Google Scholar
  7. Collette, C., Micaelli, A., Andriot, C., & Lemerle, P. (2007). Dynamic balance control of humanoids for multiple grasps and non coplanar frictional contacts. In 7th IEEE-RAS International Conference on Humanoid Robots (pp. 81–88).Google Scholar
  8. Dietrich, A., Albu-Schaffer, A., & Hirzinger, G. (2012). On continuous null space projections for torque-based, hierarchical, multi-objective manipulation. In IEEE international conference on robotics and automation (ICRA) (pp. 2978–2985). doi: 10.1109/ICRA.2012.6224571.
  9. Egeland, O., Sagli, J., Spangelo, I., & Chiaverini, S. (1991). A damped least-squares solution to redundancy resolution. In IEEE international conference on robotics and automation (Vol. 1, pp. 945–950). doi: 10.1109/ROBOT.1991.131710.
  10. Escande, A., Mansard, N., & Wieber, P. B. (2013). Hierarchical quadratic programming: Companion report. Tech. Rep.
  11. Escande, A., Mansard, N., & Wieber, P. B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International Journal of Robotics Research. doi: 10.1177/0278364914521306.
  12. Flacco, F., De Luca, A., & Khatib, O. (2012a). Motion control of redundant robots under joint constraints: Saturation in the null space. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 285–292). doi: 10.1109/ICRA.2012.6225376.
  13. Flacco, F., De Luca, A., & Khatib, O. (2012b). Prioritized multi-task motion control of redundant robots under hard joint constraints. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3970–3977). doi: 10.1109/IROS.2012.6385619.
  14. Hsu, P., Mauser, J., & Sastry, S. (1989). Dynamic control of redundant manipulators. Journal of Robotic Systems, 6(2), 133–148. doi: 10.1002/rob.4620060203.CrossRefzbMATHGoogle Scholar
  15. Jarquin, G., Escande, A., Arechavaleta, G., Moulard, T., Yoshida, E., & Parra-Vega, V. (2013). Real-time smooth task transitions for hierarchical inverse kinematics. In 13th IEEE-RAS international conference on humanoid robots (pp. 528–533). doi: 10.1109/HUMANOIDS.2013.7030024.
  16. Kanoun, O., Lamiraux, F., Wieber, P. B., Kanehiro, F., Yoshida, E., & Laumond, J. P. (2009). Prioritizing linear equality and inequality systems: Application to local motion planning for redundant robots. In IEEE international conference on robotics and automation (pp. 2939–2944).Google Scholar
  17. Kanoun, O., Lamiraux, F., & Wieber, P. B. (2011). Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task. IEEE Transactions on Robotics, 27(4), 785–792.CrossRefGoogle Scholar
  18. Keith, F., Wieber, P. B., Mansard, N., & Kheddar, A. (2011). Analysis of the discontinuities in prioritized tasks-space control under discrete task scheduling operations. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3887–3892). doi: 10.1109/IROS.2011.6094706.
  19. Kerrigan, E. C., & Maciejowski, J. M. (2000). Soft constraints and exact penalty functions in model predictive control. In Proceedings of the UKACC international conference. Cambridge, UK.Google Scholar
  20. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research, 5(1), 90–98.MathSciNetCrossRefGoogle Scholar
  21. Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3(1), 43–53.CrossRefGoogle Scholar
  22. Khatib, O. (1995). Inertial properties in robotic manipulation: An object-level framework. The International Journal of Robotics Research, 14(1), 19–36.CrossRefGoogle Scholar
  23. Khatib, O., Sentis, L., & Park, J. H. (2008). A unified framework for whole-body humanoid robot control with multiple constraints and contacts. European robotics symposium 2008, springer tracts in advanced robotics (Vol. 44, pp. 303–312). Berlin: Springer.Google Scholar
  24. Lee, J., Mansard, N., & Park, J. (2012). Intermediate desired value approach for task transition of robots in kinematic control. IEEE Transactions on Robotics, 28(6), 1260–1277. doi: 10.1109/TRO.2012.2210293.CrossRefGoogle Scholar
  25. Liégeois, A. (1977). Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man and Cybernetics, 7(12), 868–871.CrossRefzbMATHGoogle Scholar
  26. Liu, M., Micaelli, A., Evrard, P., Escande, A., & Andriot, C. (2011). Interactive dynamics and balance of a virtual character during manipulation tasks. In IEEE international conference on robotics and automation (ICRA) (pp. 1676–1682).Google Scholar
  27. Liu, M., Micaelli, A., Evrard, P., Escande, A., & Andriot, C. (2012). Interactive virtual humans: A two-level prioritized control framework with wrench bounds. IEEE Transactions on Robotics, 28(6), 1309–1322. doi: 10.1109/TRO.2012.2208829.CrossRefGoogle Scholar
  28. Mansard, N., Khatib, O., & Kheddar, A. (2009a). A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Transactions on Robotics, 25(3), 670–685.CrossRefGoogle Scholar
  29. Mansard, N., Remazeilles, A., & Chaumette, F. (2009). Continuity of varying-feature-set control laws. IEEE Transactions on Automatic Control, 54(11), 2493–2505. doi: 10.1109/TAC.2009.2031202.MathSciNetCrossRefGoogle Scholar
  30. Mistry, M., Nakanishi, J., & Schaal, S. (2007). Task space control with prioritization for balance and locomotion. In IEEE/RSJ international conference on intelligent robots and systems (pp. 331–338). doi: 10.1109/IROS.2007.4399595.
  31. Mistry, M., Nakanishi, J., Cheng, G., & Schaal, S. (2008). Inverse kinematics with floating base and constraints for full body humanoid robot control. In 8th IEEE-RAS international conference on humanoid robots (pp. 22–27). doi: 10.1109/ICHR.2008.4755926.
  32. Padois, V., Fourquet, J. Y., Chiron, P., et al. (2007). Kinematic and dynamic model-based control of wheeled mobile manipulators: A unified framework for reactive approaches. Robotica, 25(2), 157.Google Scholar
  33. Peters, J., Mistry, M., Udwadia, F., Nakanishi, J., & Schaal, S. (2008). A unifying framework for robot control with redundant dofs. Autonomous Robots, 24(1), 1–12. doi: 10.1007/s10514-007-9051-x.CrossRefGoogle Scholar
  34. Petrič, T., & Žlajpah, L. (2013). Smooth continuous transition between tasks on a kinematic control level: Obstacle avoidance as a control problem. Robotics and Autonomous Systems, 61(9), 948–959. doi: 10.1016/j.robot.2013.04.019.CrossRefGoogle Scholar
  35. Saab, L., Soueres, P., & Fourquet, J. Y. (2009). Coupling manipulation and locomotion tasks for a humanoid robot. In International conference on advances in computational tools for engineering applications (ACTEA) (pp. 84–89).Google Scholar
  36. Saab, L., Mansard, N., Keith, F., Fourquet, J. Y., & Soueres, P. (2011). Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints. In IEEE international conference on robotics and automation (ICRA) (pp 1091–1096).Google Scholar
  37. Saab, L., Ramos, O., Keith, F., Mansard, N., Soueres, P., & Fourquet, J. Y. (2013). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29(2), 346–362. doi: 10.1109/TRO.2012.2234351.CrossRefGoogle Scholar
  38. Sadeghian, H., Villani, L., Keshmiri, M., & Siciliano, B. (2013). Dynamic multi-priority control in redundant robotic systems. Robotica, 31, 1155–1167. doi: 10.1017/S0263574713000416.CrossRefGoogle Scholar
  39. Salini, J. (2013). Arboris-Python: A rigid body dynamics and contacts simulator written in python.
  40. Salini, J., Padois, V., & Bidaud, P. (2011). Synthesis of complex humanoid whole-body behavior: A focus on sequencing and tasks transitions. In IEEE international conference on robotics and automation (ICRA) (pp. 1283–1290). doi: 10.1109/ICRA.2011.5980202.
  41. Sentis, L., & Khatib, O. (2004a). Prioritized multi-objective dynamics and control of robots in human environments. In 4th IEEE/RAS international conference on humanoid robots. (Vol. 2, pp. 764–780). doi: 10.1109/ICHR.2004.1442684.
  42. Sentis, L., & Khatib, O. (2004b). Task-oriented control of humanoid robots through prioritization. In IEEE RAS/RSJ international conference on humanoid robots.Google Scholar
  43. Sentis, L., & Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. International Journal of Humanoid Robotics, 02(04), 505–518. doi: 10.1142/S0219843605000594.CrossRefGoogle Scholar
  44. Sentis, L., Park, J., & Khatib, O. (2010). Compliant control of multi-contact and center of mass behaviors in humanoid robots. IEEE Transactions on Robotics, 26(3), 483–501. doi: 10.1109/TRO.2010.2043757.CrossRefGoogle Scholar
  45. Siciliano, B., & Slotine, J. J. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In Fifth international conference on advanced robotics (Vol. 2, pp 1211–1216). doi: 10.1109/ICAR.1991.240390.
  46. Stasse, O., Escande, A., Mansard, N., Miossec, S., Evrard, P., & Kheddar, A. (2008). Real-time (self)-collision avoidance task on a HRP-2 humanoid robot. In IEEE international conference on robotics and automation (ICRA) (pp. 3200–3205).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Univ Paris 06, UMR 7222Institut des Systèmes Intelligents et de Robotique (ISIR)ParisFrance
  2. 2.CNRSUMR 7222, ISIRParisFrance

Personalised recommendations