Advertisement

Autonomous Robots

, Volume 39, Issue 2, pp 169–182 | Cite as

Biologically inspired gait transition control for a quadruped walking robot

  • Ig Mo Koo
  • Tran Duc Trong
  • Yoon Haeng Lee
  • Hyungpil Moon
  • Jachoon Koo
  • Sangdoek Park
  • Hyouk Ryeol ChoiEmail author
Article

Abstract

The gait transition of a quadruped walking robot is the switching of gait with non-periodic gait sequences between the periodic ones such as from walk to trot or trot to walk etc. It is very much important because the robot should change its gait depending upon the moving speed to enhance the efficiency of locomotion. In this paper, we present a quasi-static gait transition control method for a quadruped walking robot. It is based on the observation on the locomotion behaviors of quadruped animals, which show a sudden and discrete changes of gait patterns depending on the speed. The method predefines gait transition patterns, and gait sequences are determined according to the current and desired leg postures. It can be useful because the applicable to any type of walking controller. In this study, we implement the proposed method on a self-contained quadruped walking robot, called Artificial Digitigrade for Natural Environment Version III (AiDIN-III), and its effectiveness is experimentally validated.

Keywords

Quadruped walking robot Gait transition Leg control Sequence 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2014R1A2A2A01005241).

Supplementary material

10514_2015_9433_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (docx 17 KB)

Supplementary material 2 (wmv 27145 KB)

Supplementary material 3 (wmv 50851 KB)

Supplementary material 4 (wmv 41870 KB)

References

  1. Alexander, R. M., & Jayes, A. S. (1983). A dynamic similarity hypothesis for the gaits of quadrupedal mammals. Journal of Zoology, 201, 135–152.CrossRefGoogle Scholar
  2. Alexander, R. M. (2003). Principle of animal locomotion. Princeton: Princeton University Press.CrossRefGoogle Scholar
  3. Allen, T. J., Quinn, R. D., Bachmann, R. J., & Ritzmann, R. E. (2003). Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 1370–1375).Google Scholar
  4. Aoi, S., Fujiki, S., Katayama, D., Yamashita, T., Kohda, T., Senda, K., & Tsuchiya, K. (2011). Experimental verification of hysteresis in gait transition of a quadruped robot driven by nonlinear oscillators with phase resetting. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 2280–2285).Google Scholar
  5. Aoi, S., Yamashita, T., Ichikawa, A., & Tsuchiya, K. (2010). Hysteresis in gait transition induced by changing waist joint stiffness of a quadruped robot driven by nonlinear oscillators with phase resetting. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 1915–1920).Google Scholar
  6. Berns, K., Ilg, W., Deck, M., Albiez, J., & Dillmann, R. (1999). Mechanical construction and computer architecture of the four-legged walking machine BISAM. IEEE/ASM transaction on mechatronics, 4(1), 32–38.CrossRefGoogle Scholar
  7. Cavagna, G. A., Thys, H., & Zamboni, A. (1976). The sources of external work in level walking and running. The Journal of Physiology, 262(3), 639–657.CrossRefGoogle Scholar
  8. Chew, C. M., Herr, H., Hu, J., Pratt, J., & Pratt, G. (1998). Virtual model based adaptive control of a biped walking robot. International Journal on Artificial Intelligence Tools, 8(3), 337–348.Google Scholar
  9. Choi, Y. J., Yon, B. J., & Oh, S. R. (2004). On the stability of indirect ZMP controller for biped robot systems. Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2, 1971–1996.Google Scholar
  10. Fukuoka, Y., Kimura, H., & Cohen, A. H. (2003). Adaptive dynamic walking of a quadruped robot on irregulat terrain based on biological concepts. The International Journal of Robotics Research, 22(3–4), 187–202.CrossRefGoogle Scholar
  11. Ghasempoor., & Sepehri, N. (1995). A measure of machine stability for moving base manipulators. In Proceedings of IEEE international conference on robotics and automation, vol. 3, (pp. 2249–2254).Google Scholar
  12. Griffin, T. M., Main, R. P., & Farley, C. T. (2004). Biomechanics of quadrupedal walking: how do four-legged animal achieve inverted pendulum-like movements? The Journal of Experimental Biology, 207, 3545–3558.CrossRefGoogle Scholar
  13. Hildebrand, M. (1965). Symmetrical gaits of horses. Science, 150, 701–708.CrossRefGoogle Scholar
  14. Hunang, Q., Yokosi, K., Shunji, K., Kaneko, K., Arai, H., Koyachi, N., et al. (2001). Planning walking pattern for biped robot. IEEE Transaction on Robotics and Automation, 17(3), 280–289.CrossRefGoogle Scholar
  15. Inagaki, K., & Kobayashi, H. (1993). A gait transition for quadruped walking machine. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 525–531).Google Scholar
  16. Kimura, H., & Fukuoka, Y. (2004). Biologically inspired adaptive dynamic walking in outdoor environment using a self-contained quadruped robot : Tekken2”. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, (pp. 986–991).Google Scholar
  17. Koo, I. M., Trong, T. D., Kang, T. H., Vo, G. L., Song, Y. K., Lee, C. M., & Choi, H. R. (2007). Control of a quadruped walking robot based on biologically inspired approach. In Proceedings of ieee/rsj international conference on intelligent robots and systems, (pp. 2969–2974).Google Scholar
  18. Koo, I. M., Kang, T. H., Vo, G. L., Trong, T. D., Song, Y. K., & Choi, H. R. (2009). Biologically inspired control of quadruped walking robot. International Journal of Control, Automation, and Systems, 7(4), 577–584.CrossRefGoogle Scholar
  19. Lin, B., & Song, S. (1993). Dynamic modeling, stability and energy efficiency of a quadruped walking machine. Proceedings of IEEE International Conference on Robotics and Automation, 3, 367–373.CrossRefGoogle Scholar
  20. Lin, J. N., & Song, S. M. (2002). Modeling gait transitions of quadrupeds and their generalization with CMAC neural networks. IEEE Transaction on System, Man, and Cybernetics-Part C: Application and Reviews, 32(3), 177–189.CrossRefGoogle Scholar
  21. Matos, V., Santos, C. P., & Pinto, C. M. A. (2009). A Brainstem-like modulation approach for gait transition in a quadruped robot. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 2665–2670).Google Scholar
  22. McGhee, R. B., & Frank, A. A. (1968). On the stability properties of quadruped creeping gaits. The International Journal of Mathematical Biosciences, 3, 331–351.CrossRefzbMATHGoogle Scholar
  23. Messuri, D. A., & Klein, C. A. (1985). Automatic body regulation for maintaining stability of legged vehicle during rough terrain locomotion. IEEE Journal of Robotics and Automation, RA–1(3), 132–141.CrossRefGoogle Scholar
  24. Muybridge, E. (1957). Animals in motion. New York: Dover.Google Scholar
  25. Nagy, P. V., Desa, S., & Whittaker, W. L. (1994). Energy-based stability measures for reliable locomotion of statically stable walkers: Theory and application. The International Journal of Robotics Research, 13(3), 272–287.CrossRefGoogle Scholar
  26. Nunamaker, D. M., & Blauuer, P. D. (1985). Normal and abnormal gait, the international veterinary information service. New York, USA: Ithaca.Google Scholar
  27. Papadopoulos, E. G., & Rey, D. A. (1996). A new measure of tipover stability margin for mobile manipulators. Proceedings of IEEE International Conference on Robotics and Automation, 4, 3111–3116.CrossRefGoogle Scholar
  28. Pratt, J., Chew, C. M., Torres, A., Dilworth, P., & Pratt, G. (2001). Virtual model control: An intuitive approach for bipedal locomotion. The International Journal of Robotics Research, 20(2), 129–143.CrossRefGoogle Scholar
  29. Raibert, M., Blankespoor, K., Nelson, G., & Playter, R. (2008). “BigDog, the rough terrain quadruped robot”. In Proceedings of international conference on federation of automatic control, (pp. 10822–10825).Google Scholar
  30. Rebula, J. R., Neuhaus, P. D., Bonnlander, B. V., Johnson, M. J., & Pratt, J. E. (2007). A controller for the littledog quadruped walking on rough terrain. In Proceedings of IEEE international conference on robotics and automation, (pp. 1467–1473).Google Scholar
  31. Remy, C. D., Buffinton, K., & Siegwart, R. (2010). Stability analysis of passive dynamic walking of quadrupeds. The International Journal of Robotics Research, 29(9), 1173–1185.CrossRefGoogle Scholar
  32. Santos, P. G., Garcia, E., & Estremera, J. (2006). Quadrupedal locomotion. London: Springer.zbMATHGoogle Scholar
  33. Santos, C. P., & Matos, V. (2011). Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach. The International Journal of Robotics and Autonomous Systems, 59, 620–634.CrossRefGoogle Scholar
  34. Schmiedeler, J. P., Marhefka, D. W., Orin, D. E., & Waldron, K. J. (2001). A study of quadruped gallops, NSF Design, Service and Manufacturing Grantees and Research Conference, (pp. 1–10).Google Scholar
  35. Smith, J. A., & Poulakakis, I. (2004). Rotary gallop in the untethered quadrupedal robot scout II”. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, (pp. 2556–2561).Google Scholar
  36. Song, S. M., & Waldron, K. J. (1989). Machines that walk. Cambridge, MA: MIT Press.Google Scholar
  37. Takeuchi, H. (1999). Development of MEL HORSE. In Proceeding of IEEE international conference on robotics and automation, (pp. 1057–1062).Google Scholar
  38. Tran, D. T., Koo, I. M., Moon, H., Cho J. S., Park, S., & Choi, H. R. (2012). Motion control of a quadruped robot in unknown rough terrains using 3D spring damper leg model. In Proceedings of IEEE international conference on robotics and automation, (pp. 986–991).Google Scholar
  39. Tran, D. T., Koo, I. M., Vo, G. L., Roh, S., Park, S., Moon, H., & Choi, H. R. (2009). A new method in modeling central pattern generators to control quadruped walking robots. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, (pp. 129–134).Google Scholar
  40. Tsujita, K., Kobayashi, T., Inoura, T., & Masuda, T. (2008). Gait transition by tuning muscle tones using pneumatic actuators in quadruped locomotion. In Proceeding on IEEE/RSJ international conference on intelligent robots and systems, (pp. 2453–2458).Google Scholar
  41. Yoneda, K., & Hirose, S. (1986). Dynamic and static fusion gait of a quadruped walking vehicle on a winding path. Proceedings of IEEE international conference on Robotics and Automation, 1, 143–148.Google Scholar
  42. Yoneda, K., & Hirose, S. (1995). Dynamic and static fusion gait of quadruped walking on a winding path. Advanced Robotics, 9(2), 125–136.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ig Mo Koo
    • 1
  • Tran Duc Trong
    • 2
  • Yoon Haeng Lee
    • 2
  • Hyungpil Moon
    • 2
  • Jachoon Koo
    • 2
  • Sangdoek Park
    • 3
  • Hyouk Ryeol Choi
    • 2
    Email author
  1. 1.University of TexasHoustonUSA
  2. 2.School of Mechanical Engineering, Sungkyunkwan UniversitySuwonKorea
  3. 3.Division of Applied Robot TechnologyKorea Institute of Industrial TechnologyAnsanKorea

Personalised recommendations