Autonomous Robots

, Volume 39, Issue 1, pp 87–100 | Cite as

An extendible reconfigurable robot based on hot melt adhesives

  • Luzius Brodbeck
  • Fumiya Iida


The ability to physically enlarge one’s own body structures plays an important role in robustness and adaptability of biological systems. It is, however, a significant challenge for robotic systems to autonomously extend their bodies. To address this challenge, this paper presents an approach using hot melt adhesives (HMAs) to assemble and integrate extensions into the robotic body. HMAs are thermoplastics with temperature dependent adhesiveness and bonding strength. We exploit this property of HMAs to connect passive external objects to the robot’s own body structures, and investigate the characteristics of the approach. In a set of elementary configurations, we analyze to which extent a robot can self-reconfigure using the proposed method. We found that the extension limit depends on the mechanical properties of the extension, and the reconfiguration algorithm. A five-axis robot manipulator equipped with specialized HMA handling devices is employed to demonstrate these findings in four experiments. It is shown that the robot can construct and integrate extensions into its own body, which allow it to solve tasks that it could not achieve in its initial configuration.


Biologically-inspired robots Reconfigurable robots  Flexible arms Flexible manufacturing 



This work was supported by the Swiss National Science Foundation Professorship Grant No. PP00P2123387/1, and the ETH Zurich Research Grant ETH-23-10-3.

Supplementary material

Supplementary material 1 (avi 62362 KB)

Supplementary material 2 (avi 32781 KB)


  1. Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X., Park, S. I., Xiong, Y., et al. (2009). Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 323(5921), 1590–1593. doi: 10.1126/science.1168375.CrossRefGoogle Scholar
  2. Baca, J., Ferre, M., & Aracil, R. (2012). A heterogeneous modular robotic design for fast response to a diversity of tasks. Robotics and Autonomous Systems, 60(4), 522–531. doi: 10.1016/j.robot.2011.11.013.CrossRefGoogle Scholar
  3. Brodbeck, L., & Iida, F. (2012). Enhanced robotic body extension with modular units. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, (pp. 1428–1433). doi: 10.1109/IROS.2012.6385516.
  4. Brodbeck, L., Wang, L., & Iida, F. (2012). Robotic body extension based on hot melt adhesives. In Proceedings of the IEEE international conference on robotics and automation, (pp. 4322–4327). doi: 10.1109/ICRA.2012.6225258.
  5. Butler, Z., Kotay, K., Rus, D., & Tomita, K. (2004). Generic decentralized control for lattice-based self-reconfigurable robots. The International Journal of Robotics Research, 23(9), 919–937. doi: 10.1177/0278364904044409.CrossRefGoogle Scholar
  6. Crump, S. S. (1992). Apparatus and method for creating three-dimensional objects. US Patent, 5,121,329, 9 June 1992.Google Scholar
  7. Fitch, R. C. (2004). Heterogeneous self-reconfiguring robotics. PhD thesis, Dartmouth College.Google Scholar
  8. Gierenz, G., & Karmann, W. (Eds.). (2001). Adhesives and adhesive tapes. Weinheim: Wiley-VCH.Google Scholar
  9. Gilpin, K., Knaian, A., & Rus, D. (2010). Robot pebbles: One centimeter modules for programmable matter through self-disassembly. In Proceedings of the IEEE international conference on robotics and automation, (pp. 2485–2492). doi: 10.1109/ROBOT.2010.5509817.
  10. Hafez, M., Lichter, M., & Dubowsky, S. (2003). Optimized binary modular reconfigurable robotic devices. IEEE/ASME Transactions on Mechatronics, 8(1), 18–25. doi: 10.1109/TMECH.2003.809156.CrossRefGoogle Scholar
  11. Hiller, J., & Lipson, H. (2012). Automatic design and manufacture of soft robots. IEEE Transactions on Robotics, 28(2), 457–466. doi: 10.1109/TRO.2011.2172702.CrossRefGoogle Scholar
  12. Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., et al. (2011). RepRap—the replicating rapid prototyper. Robotica, 29(1), 177–191. doi: 10.1017/S026357471000069X.CrossRefGoogle Scholar
  13. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., & Murata, S. (2008). Distributed self-reconfiguration of M-TRAN III modular robotic system. International Journal of Robotics Research, 27(3–4), 373–386. doi: 10.1177/0278364907085560.CrossRefGoogle Scholar
  14. Laarman, J., Jokić, S., Novikov, P., Fraguada, L. E., & Markopoulou, A. (2014). Anti-gravity additive manufacturing. In F. Gramazio, M. Kohler, & S. Langenberg (Eds.), Fabricate (pp. 193–197). Zurich: gta Verlag.Google Scholar
  15. Leach, D., Wang, L., Reusser, D., & Iida, F. (2014). Automatic building of a web-like structure based on thermoplastic adhesive. Bioinspiration & Biomimetics, 9(3), 036,014.CrossRefGoogle Scholar
  16. Li, W., Bouzidi, L., & Narine, S. (2008). Current research and development status and prospect of hot-melt adhesives: A review. Industrial & Engineering Chemistry Research, 47(20), 7524–7532. doi: 10.1021/ie800189b.CrossRefGoogle Scholar
  17. Liu, G., Liu, Y., & Goldenberg, A. (2011). Design, analysis, and control of a spring-assisted modular and reconfigurable robot. IEEE/ASME Transactions on Mechatronics, 16(4), 695–706. doi: 10.1109/TMECH.2010.2050895.CrossRefGoogle Scholar
  18. Mondada, F., Gambardella, L., Floreano, D., Nolfi, S., Deneuborg, J. L., & Dorigo, M. (2005). The cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robotics and Automation Magazine, 12(2), 21–28. doi: 10.1109/MRA.2005.1458313.CrossRefGoogle Scholar
  19. Moses, M. S., Ma, H., Wolfe, K. C., & Chirikjian, G. S. (2013). An architecture for universal construction via modular robotic components. Robotics and Autonomous Systems, 62, 945–965. doi: 10.1016/j.robot.2013.08.005.CrossRefGoogle Scholar
  20. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., & Kokaji, S. (2002). M-TRAN: Self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics, 7(4), 431–441. doi: 10.1109/TMECH.2002.806220.CrossRefGoogle Scholar
  21. Nurzaman, S. G., Culha, U., Brodbeck, L., Wang, L., & Iida, F. (2013). Active sensing system with in situ adjustable sensor morphology. PLoS ONE, 8(12), e84,090. doi: 10.1371/journal.pone.0084090.CrossRefGoogle Scholar
  22. Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318(5853), 1088–1093. doi: 10.1126/science.1145803.CrossRefGoogle Scholar
  23. Pfeifer, R., Iida, F., & Lungarella, M. (2014). Cognition from the bottom up: on biological inspiration, body morphology, and soft materials. Trends in Cognitive Sciences doi: 10.1016/j.tics.2014.04.004.
  24. Revzen, S., Bhoite, M., Macasieb, A., & Yim, M. (2011). Structure synthesis on-the-fly in a modular robot. In Proceedings of the IEEE/RSJ International conference on intelligent robots and systems, (pp. 4797–4802). doi: 10.1109/IROS.2011.6094575.
  25. Sadeghi, A., Tonazzini, A., Popova, L., & Mazzolai, B. (2013). Robotic mechanism for soil penetration inspired by plant root. In Proceedings of the IEEE international conference on robotics and automation, (pp. 3457–3462). doi: 10.1109/ICRA.2013.6631060.
  26. Seo, J., Gray, S., Kumar, V., & Yim, M. (2011). Reconfiguring chain-type modular robots based on the carpenter’s rule theorem. In D. Hsu, V. Isler, J. C. Latombe, & M. Lin (Eds.), Algorithmic Foundations of robotics IX, springer tracts in advanced robotics, vol 68 (pp. 105–120). Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-17452-0_7.
  27. Shen, W. M., Kovac, R., & Rubenstein, M. (2009). SINGO: A single-end-operative and genderless connector for self-reconfiguration, self-assembly and self-healing. In Proceedings of the IEEE international conference on robotics and automation, (pp. 4253–4258). doi: 10.1109/ROBOT.2009.5152408.
  28. Wang, L., & Iida, F. (2013). Physical connection and disconnection control based on hot melt adhesives. IEEE/ASME Transactions on Mechatronics, 18(4), 1397–1409. doi: 10.1109/TMECH.2012.2202558.CrossRefGoogle Scholar
  29. Wang, L., Graber, L., & Iida, F. (2013). Large-payload climbing in complex vertical environments using thermoplastic adhesive bonds. IEEE Transactions on Robotics, 29(4), 863–874. doi: 10.1109/TRO.2013.2256312.CrossRefGoogle Scholar
  30. Wang, L., Brodbeck, L., & Iida, F. (2014a). Mechanics and energetics in tool manufacture and use: a synthetic approach. Journal of the Royal Society Interface, 11(100), doi: 10.1098/rsif.2014.0827.
  31. Wang, L., Culha, U., & Iida, F. (2014b). A dragline-forming mobile robot inspired by spiders. Bioinspiration & Biomimetics, 9(1), 016006.CrossRefGoogle Scholar
  32. Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343(6172), 754–758. doi: 10.1126/science.1245842.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Bio-Inspired Robotics Lab, Department of Mechanical and Process EngineeringETH ZurichZurichSwitzerland
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations