Autonomous Robots

, Volume 38, Issue 4, pp 439–457 | Cite as

Spatially targeted communication in decentralized multirobot systems

  • Nithin Mathews
  • Gabriele Valentini
  • Anders Lyhne Christensen
  • Rehan O’Grady
  • Arne Brutschy
  • Marco Dorigo
Article

Abstract

Spatially targeted communication (STC) allows a message sender to choose message recipients based on their location in space. Currently, STC in multirobot systems is limited to centralized systems. In this paper, we propose a novel communication protocol that enables STC in decentralized multirobot systems. The proposed protocol dispenses with the many aspects that underpin previous approaches, including external tracking infrastructure, a priori knowledge, global information, dedicated communication devices or unique robot IDs. We show how off-the-shelf hardware components such as cameras and LEDs can be used to establish ad-hoc STC links between robots. We present a Markov chain model for each of the two constituent parts of our proposed protocol and we show, using both model-based analysis and experimentation, that the proposed protocol is highly scalable. We also present the results of extensive experiments carried out on an autonomous, heterogeneous multirobot system composed of one aerial robot and numerous ground-based robots. Finally, two real world application scenarios are presented in which we show how spatial coordination can be achieved in a decentralized multirobot system through STC.

Keywords

Decentralized multirobot systems Robot swarms Air-ground robot teams Spatial coordination Inter-robot communication 

References

  1. Barnhard, D. H., McClain, J. T., Wimpey, B. J., & Potter, W. D. (2004). Odin and Hodur: Using bluetooth communication for coordinated robotic search. In Proceedings of the 2004 International Conference on Artificial Intelligence (IC-AI 2004) (pp. 365–371). Athens, GA: CSREA Press.Google Scholar
  2. Bolla, K., Istenes, Z., Kovacs, T., & Fazekas, G. (2011). A fast image processing based robot identification method for Surveyor SRV-1 robots. In Proceedings of 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2011) (pp. 1003–1009). New York, NY: ASME.Google Scholar
  3. Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., et al. (2010). The marXbot, a miniature mobile robot opening new perspectives for thecollective-robotic research. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2010) (pp. 4187–4193). Los Alamitos, CA: IEEE Computer Society Press.Google Scholar
  4. Bristeau, P. J., Callou, F., Vissière, D., & Petit, N. (2011). The navigation and control technology inside the AR.Drone micro UAV. InProceedings of the 18th IFAC World Congress, IFAC-PapersOnLine (pp. 1477–1484). Centerville, OH.Google Scholar
  5. Campo, A., Nouyan, S., Birattari, M., Groß, R., & Dorigo, M. (2006). Negotiation of goal direction for cooperative transport. In Ant Colony Optimization and Swarm Intelligence—Proceedings of ANTS 2006 – Fifth International Workshop, vol 4150 (pp. 191–202). Berlin, Germany: Springer.Google Scholar
  6. Chaimowicz, L., Sugar, T., Kumar, V., & Campos, M. F. M. (2001). An architecture for tightly coupled multi-robot cooperation. In Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA 2001) vol 3, (pp. 2992–2997). Piscataway, NJ: IEEE Press.Google Scholar
  7. Christensen, A. L., O’Grady, R., & Dorigo, M. (2007). Morphology control in a self-assembling multi-robot system. IEEE Robotics & Automation Magazine, 14(4), 18–25.CrossRefGoogle Scholar
  8. Christensen, A. L., O’Grady, R., & Dorigo, M. (2008). SWARMORPH-script: A language for arbitrary morphology generation in self-assembling robots. Swarm Intelligence, 2(2–4), 143–165.CrossRefGoogle Scholar
  9. Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.CrossRefGoogle Scholar
  10. Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.CrossRefGoogle Scholar
  11. Franchi, A., Oriolo, G., & Stegagno, P. (2010). Probabilistic mutual localization in multi-agent systems from anonymous position measures. In 49th IEEE Conference on Decision and Control, Atlanta, GA, USA (pp. 6534–6540).Google Scholar
  12. Gerkey, B. P., & Mataric, M. J. (2002). Sold!: Auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5), 758–768.CrossRefGoogle Scholar
  13. Goshtasby, A. (2012). Similarity and dissimilarity measures. In Image Registration, Advances in Computer Vision and Pattern Recognition (pp. 7–66). London, UK: Springer.Google Scholar
  14. Grabowski, R., & Khosla, P. (2001). Localization techniques for a team of small robots. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001) vol 2, (pp. 1067–1072). Piscataway, NJ: IEEE Press.Google Scholar
  15. Groß, R., & Dorigo, M. (2008). Self-assembly at the macroscopic scale. Proceedings of the IEEE, 96(9), 1490–1508.CrossRefGoogle Scholar
  16. Gutiérrez, A., Campo, A., Dorigo, M., Amor, D., Magdalena, L., & Monasterio-Huelin, F. (2008). An open localization and local communication embodied sensor. Sensors, 8(11), 7545–7563.CrossRefGoogle Scholar
  17. Kemeny, J. G., & Snell, J. L. (1976). Finite markov chains. New York, NY: Springer-Verlag.MATHGoogle Scholar
  18. Krajník, T., Vonásek, V., Fišer, D., & Faigl, J. (2011). AR-Drone as a platform for robotic research and education. In Research and Education in Robotics—EUROBOT 2011 vol 161, (pp. 172–186). Berlin, Germany: Springer.Google Scholar
  19. Kumar, V., & Michael, N. (2012). Opportunities and challenges with autonomous micro aerial vehicles. The International Journal of Robotics Research, 31(11), 1279–1291.CrossRefGoogle Scholar
  20. Kushleyev, A., Mellinger, D., Powers, C., & Kumar, V. (2013). Towards a swarm of agile micro quadrotors. Autonomous Robots, 35(4), 287–300.CrossRefGoogle Scholar
  21. Mathews, N., Christensen, A. L., Ferrante, E., O’Grady, R., & Dorigo, M. (2010). Establishing spatially targeted communication in a heterogeneous robot swarm. In Proceedings of 9th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010) (pp. 939–946). Richland, SC: IFAAMAS.Google Scholar
  22. Mathews, N., Christensen, A. L., O’Grady, R., & Dorigo, M. (2010). Cooperation in a heterogeneous robot swarm through spatially targeted communication. In Proceedings of the 7th International Conference on Swarm Intelligence (ANTS 2010) (pp. 400–407). Berlin, Germany: Springer.Google Scholar
  23. Mathews, N., Christensen, A. L., O’Grady, R., Rétornaz, P., Bonani, M., Mondada, F., et al. (2011). Enhanced directional self-assembly based on active recruitment and guidance. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011) (pp. 4762–4769). Los Alamitos, CA: IEEE Computer Society Press.Google Scholar
  24. Mathews, N., Christensen, A. L., O’Grady, R., & Dorigo, M. (2012). Spatially targeted communication and self-assembly. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012) (pp. 2678–2679). Los Alamitos, CA: IEEE Computer Society Press.Google Scholar
  25. Mathews, N., Stranieri, A., Scheidler, A., & Dorigo, M. (2012). Supervised morphogenesis – morphology control of ground-based self-assembling robots by aerial robots. In Proceedings of 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012) (pp. 97–104). Richland, SC: IFAAMAS.Google Scholar
  26. Mathews, N., Valentini, G., Christensen, A. L., O’Grady, R., Brutschy, A., & Dorigo, M. (2013). Spatially targeted communication in multirobot systems. Online supplementary material: http://iridia.ulb.ac.be/supp/IridiaSupp2013-005.
  27. McClain, J. T., Wimpey, B. J., Barnhard, D. H., & Potter, W. D. (2004). Distributed robotic target acquisition using Bluetooth communication. In Proceedings of the ACM Southeast Regional Conference 2004 (pp. 291–296). New York, NY: ACM.Google Scholar
  28. Nouyan, S., Campo, A., & Dorigo, M. (2008). Path formation in a robot swarm: Self-organized strategies to find your way home. Swarm Intelligence, 2(1), 1–23.CrossRefGoogle Scholar
  29. Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2009). Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation, 13(4), 695–711.CrossRefGoogle Scholar
  30. Parker, L. E., Kannan, B., Tang, F., & Bailey, M. (2004). Tightly-coupled navigation assistance in heterogeneous multi-robot teams. In Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004) (pp. 1016–1022). Piscataway, NJ: IEEE Press.Google Scholar
  31. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.CrossRefGoogle Scholar
  32. Pugh, J., Raemy, X., Favre, C., Falconi, R., & Martinoli, A. (2009). A fast onboard relative positioning module for multirobot systems. IEEE/ASME Transactions on Mechatronics, 14(2), 151–162.CrossRefGoogle Scholar
  33. Rivard, F., Bisson, J., Michaud, F., & Létourneau, D. (2008). Ultrasonicrelative positioning for multi-robot systems. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation (ICRA 2008) (pp. 323–328). Piscataway, NJ: IEEE Press.Google Scholar
  34. Roberts, J. F., Stirling, T., Zufferey, J. C., & Floreano, D. (2012). 3-D relative positioning sensor for indoor flying robots. Autonomous Robots, 33(1–2), 5–20.CrossRefGoogle Scholar
  35. Stegagno, P., Cognetti, M., Rosa, L., Peliti, P., & Oriolo, G. (2013). Relativelocalization and identification in a heterogeneous multi-robot system. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA 2013) (pp 1857–1864). Piscataway, NJ: IEEE Press.Google Scholar
  36. Stentz, A. T., Kelly, A., Herman, H., Rander, P., Amidi, O., & Mandelbaum, R. (2002). Integrated air/ground vehicle system for semi-autonomous off-road navigation. In Proceedings of the AUVSI Unmanned Systems Symposium.Google Scholar
  37. Støy, K. (2001). Using situated communication in distributed autonomous mobile robotics. In Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence (SCAI 2001) (pp. 44–52). Amsterdam, The Netherlands: IOSPress.Google Scholar
  38. Vaughan, R. T., Sukhatme, G. S., Mesa-Martinez, F. J., & Montgomery, J. F. (2000). Fly spy: Lightweight localization and target tracking for cooperatingair and ground robots. In Distributed Autonomous Robotic Systems 4 (pp. 315–324).Google Scholar
  39. Zhang, Y., & Parker, L. (2013). IQ-ASyMTRe: Forming executable coalitions for tightly coupled multirobot tasks. IEEE Transactions on Robotics, 29(2), 400–416.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Nithin Mathews
    • 1
  • Gabriele Valentini
    • 1
  • Anders Lyhne Christensen
    • 2
  • Rehan O’Grady
    • 1
  • Arne Brutschy
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIA-CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Instituto de TelecomunicaçõesInstituto Universitário de Lisboa (ISCTE-IUL)LisboaPortugal

Personalised recommendations