Advertisement

Autonomous Robots

, Volume 38, Issue 3, pp 301–316 | Cite as

A force threshold-based position controller for legged locomotion

Toward local leg feedback algorithms for robust walking on uneven terrain
  • Mayur Palankar
  • Luther PalmerIIIEmail author
Article

Abstract

Taking inspiration from local leg feedback control loops present in animal legs, a force threshold-based position (FTP) controller is presented to aid with legged locomotion over irregular terrain. The algorithm uses pre-planned position trajectories and force feedback to either elevate or depress the foot. The FTP controller isolates the control of each leg to use only localized feedback, which can result in greater responsiveness to the terrain when compared to a centralized controller arbitrating all of the joint positions in a high degree of freedom system. The controller is robust to terrain elevations without using visual sensors, a priori terrain information, inertial sensing or inter-leg communication. Results of the FTP controller applied to a hexapod system in simulation and on an experimental system are shown in this paper. The algorithm also has the potential for expansion to bipeds, quadrupeds and other biologically-inspired forms.

Keywords

Hexapod-walking Biologically-inspired Force-feedback Local-leg-control Uneven-terrain 

Notes

Acknowledgments

The authors would like to thank Nellie Bonilla and Miguel Veliz for their help with the experimental hardware and Jeffrey Price for his work with the RobotBuilder simulation environment. This work is supported by the DARPA Maximum Mobility and Manipulation (M3) Program.

Supplementary material

Supplementary material 1 (mpg 49344 KB)

References

  1. Allen, T., Quinn, R., Bachmann, R., & Ritzmann, R. (2003). Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1370–1375).Google Scholar
  2. Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown, J. H. B., McMordie, D., et al. (2001). Rhex: A biologically inspired hexapod runner. Autonomous Robots, 11, 207–213.CrossRefzbMATHGoogle Scholar
  3. Anonymous (1967). Logistical vehicle off-road mobility. Technical Report, U.S. Army Transportation Combat Developments Agency, Fort Eustis, VA.Google Scholar
  4. Bender, J., Simpson, E., Tietz, B., Daltorio, K., Quinn, R., & Ritzmann, R. (2011). Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach blaberus discoidalis. Journal of Experimental Biology, 214, 2057–2064.CrossRefGoogle Scholar
  5. Boston Dynamics. (2012). LS3 Legged Squad Support System. Retrieved February 02, 2013 from http://www.bostondynamics.com/robot_ls3.html.
  6. Cruse, H. (1976). The function of the legs in the free walking stick insect, Carausius morosus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 112(2), 235–262.CrossRefGoogle Scholar
  7. Cruse, H. (1985). Which parameters control the leg movement of a walking insect? I. Velocity control during the stance phase. Journal of Experimental Biology, 116(1), 343–355.Google Scholar
  8. Cruse, H., Kindermann, T., Schumm, M., Dean, J., & Schmitz, J. (1998). Walknet: A biologically inspired network to control six-legged walking. Neural Networks, 11(78), 1435–1447.CrossRefGoogle Scholar
  9. Ekeberg, O., Blumel, M., & Buschges, A. (2004). Dynamic simulation of insect walking. Arthropod Structure and Development, 33(3), 287–300.CrossRefGoogle Scholar
  10. Ferrell, C. (1994). Robust and adaptive locomotion of an autonomous hexapod. In Proceedings of the From Perception to Action Conference (pp. 66–77).Google Scholar
  11. Full, R. J. (1989). Mechanics and energetics of terrestrial locomotion: From bipeds to polypeds. Energy Transformation in Cells and Animals (pp. 175–182). Berlin: Georg Thieme Verlag.Google Scholar
  12. Full, R. J., & Koditschek, D. E. (1999). Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202, 3325–3332.Google Scholar
  13. Full, R. J., & Tu, M. (1990). The mechanics of six-legged runners. Journal of Experimental Biology, 148, 129–146.Google Scholar
  14. Full, R. J., Blickhan, R., & Tu, M. (1991). Leg design in hexapedal runners. Journal of Experimental Biology, 158, 369–390.Google Scholar
  15. Goldman, D. I., Chen, T. S., Dudek, D. M., & Full, R. J. (2006). Dynamics of rapid vertical climbing in cockroaches reveals a template. Journal of Experimental Biology, 209, 2990–3000.CrossRefGoogle Scholar
  16. Goldschmidt, D., Hesse, F., Wörgötter, F., & Manoonpong, P. (2012). Biologically inspired reactive climbing behavior of hexapod robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012 (pp. 4632–4637).Google Scholar
  17. Hirose, S. (1984). A study of design and control of a quadruped walking vehicle. The International Journal of Robotics Research, 3(2), 113–133.CrossRefGoogle Scholar
  18. Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M., Remy, C., & Siegwart, R. (2012). StarlETH: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In 15th International Conference on Climbing and Walking Robot - CLAWAR 2012.Google Scholar
  19. Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., & Schaal, S. (2010). Learning, planning, and control for quadruped locomotion over challenging terrain. International Journal of Robotics Research, 30, 236–258.CrossRefGoogle Scholar
  20. Kaliyamoorthy, S., Zill, S. N., Quinn, R. D., Ritzmann, R. E., Choi, J. (2001). Finite element analysis of strains in a blaberus cockroach leg during climbing. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011 (pp. 833–838).Google Scholar
  21. Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57, 169–185.CrossRefzbMATHGoogle Scholar
  22. Kolter, J., & Ng, A. Y. (2011). The stanford littledog: A learning and rapid replanning approach to quadruped locomotion. The International Journal of Robotics Research, 30(2), 150–174.CrossRefGoogle Scholar
  23. Kovac, M., Fuchs, M., Guignard, A., Zufferey, J.-C., & Floreano, D. (2008). A miniature 7g jumping robot. In Proceedings of the IEEE International Conference on Robotics and Automation (pp. 373–378).Google Scholar
  24. Kubow, T. M., & Full, R. J. (1999). The role of the mechanical system in control: A hypothesis of selfstabilization in hexapedal runners. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 354(1385), 849–861.CrossRefGoogle Scholar
  25. Lee, W., & Orin, D. (1988). The kinematics of motion planning for multilegged vehicles over uneven terrain. IEEE Journal of Robotics and Automation, 4(2), 204–212.CrossRefGoogle Scholar
  26. Lewinger, W., Rutter, B., Blümel, M., Büschges, A., & Quinn, R. (2006). Sensory coupled action switching modules (SCASM) generate robust, adaptive stepping in legged robots. In Proceedings of CLAWAR 2006, 9th International Conference on Climbing and Walking Robots.Google Scholar
  27. Lewinger, W. A., & Quinn, R. D. (2011). Neurobiologically-based control system for an adaptively walking hexapod. Industrial Robot: An International Journal, 38(3), 258–263.CrossRefGoogle Scholar
  28. Liang, X., Xu, M., Xu, L., Liu, P., Ren, X., Kong, Z., Yang, J., Zhang, S. (2012). The amphihex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012 (pp. 3667–3672).Google Scholar
  29. McMillan, S., Orin, D. E., & McGhee, R. B. (1995). DynaMechs: An object oriented software package for efficient dynamic simulation of underwater robotic vehicles. In J. Yuh (Ed.), Underwater Robotic Vehicles: Design and Control (pp. 73–98). Albuquerque, NM: TSI Press.Google Scholar
  30. Moore, E., Campbell, D., Grimminger, F., Buehler, M. (2002). Reliable stair climbing in the simple hexapod ’rhex’. In IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA ’02 (pp. 2222–2227).Google Scholar
  31. Murphy, M. P., Saunders, A., Moreira, C., Rizzi, A. A., & Raibert, M. (2011). The littledog robot. The International Journal of Robotics Research, 30(2), 145–149.CrossRefGoogle Scholar
  32. Neville, N., Buehler, M., & Sharf, I. (2006). A bipedal running robot with one actuator per leg. In Proceedings of the IEEE International Conference on Robotics and Automation (pp. 848–853).Google Scholar
  33. Orin, D. E. (1982). Supervisory control of a multilegged robot. International Journal of Robotics Research, 1(4), 79–91.CrossRefGoogle Scholar
  34. Palmer III, L. R., & Eaton, C. (2012). Toward innate leg stability on unmodeled and natural terrain: Quadruped walking. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Google Scholar
  35. Pongas, D., Mistry, M., Schaal, S. (2007). A robust quadruped walking gait for traversing rough terrain. In IEEE International Conference on Robotics and Automation (pp. 1474–1479).Google Scholar
  36. Prochazka, A., Gillard, D., & Bennett, D. J. (1997). Implications of positive feedback in the control of movement. Journal of Neurophysiology, 77, 3237–3251.Google Scholar
  37. Raibert, M., Blankespoor, K., Nelson, G., & Playter, R., et al. (2008). Bigdog, the rough-terrain quadruped robot. In Proceedings of the 17th World Congress (pp. 10,823–10,825).Google Scholar
  38. Rebula, J., Neuhaus, P., Bonnlander, B., Johnson, M., & Pratt, J. (2007). A controller for the littledog quadruped walking on rough terrain. In IEEE International Conference on Robotics and Automation (pp. 1474–1479).Google Scholar
  39. Saranli, U., Buehler, M., & Koditschek, D. (2000). Design, modeling and preliminary control of a compliant hexapod robot. In Proceedings of the IEEE International Conference on Robotics and Automation (pp. 2589–2596).Google Scholar
  40. Saranli, U., Buehler, M., & Koditschek, D. E. (2001). Rhex: A simple and highly mobile hexapod robot. The International Journal of Robotics Research, 20(7), 616–631.CrossRefGoogle Scholar
  41. Schroer, R., Boggess, M., Bachmann, R., Quinn, R., Ritzmann, R. (2004). Comparing cockroach and whegs robot body motions. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 (pp. 3288–3293).Google Scholar
  42. Song, S. M., & Waldron, K. J. (1989). Machines that Walk. Cambridge, MA: MIT Press.Google Scholar
  43. Sponberg, S., Spence, A., Mullens, C., & Full, R. (2011). A single muscle’s multifunctional control potential of body dynamics for postural control and running. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 1592–1605.CrossRefGoogle Scholar
  44. Ting, L. H., Blickhan, R., & Full, R. J. (1994). Dynamic and static stability in hexapedal runners. Journal of Experimental Biology, 197(1), 251–269.Google Scholar
  45. Vernaza, P., Likhachev, M., Bhattacharya, S., Chitta, S., Kushleyev, A., & Lee, D. (2009). Search-based planning for a legged robot over rough terrain. In IEEE International Conference on Robotics and Automation, 2009. ICRA ’09 (pp. 2380–2387).Google Scholar
  46. Whelan, P. (1996). Control of locomotion in the decerebrate cat. Progress in Neurobiology, 49, 481–515.CrossRefGoogle Scholar
  47. Zill, S., Keller, B., Chaudhry, S., Duke, E., Neff, D., Quinn, R., et al. (2010). Detecting substrate engagement: responses of tarsal campaniform sensilla in cockroaches. Journal of Comparative Physiology A, 196, 407–420.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer Science & EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations