Autonomous Robots

, Volume 38, Issue 2, pp 193–209 | Cite as

A template candidate for miniature legged robots in quasi-static motion

  • Konstantinos Karydis
  • Yan Liu
  • Ioannis Poulakakis
  • Herbert G. Tanner
Article

Abstract

The paper introduces the Switching Four-bar Mechanism (sfm), a new low-dimensional kinematic abstraction for miniature legged robots, aimed at quasi-static motion planning in the horizontal plane. The model comprises a rigid torso and four rigid legs which engage in an alternating tetrapod gait. As the gait is executed, the torso and the legs form two switching four-bar linkages, parameterized by the leg touchdown and liftoff angles, as well as the leg angular velocity. We show that the sfm model captures on average experimentally observed behaviors of an eight-legged miniature robot crawling at low speeds quasi-statically. This work represents a first step toward a template that captures critical aspects of the kinematic behavior of miniature legged robots implementing quasi-static gaits. Such template can be used as a tool to facilitate motion planning tasks with such robots.

Keywords

Miniature legged robots Template Motion Primitives Planning 

References

  1. Baisch, A. T., Sreetharan, P., & Wood, R. J. (2010). Biologically-inspired locomotion of a 2g hexapod robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, (pp. 5360–5365).Google Scholar
  2. Birkmeyer, P., Peterson, K., & Fearing, R. S. (2009). DASH: A dynamic 16g hexapedal robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Saint Louis, MO, (pp. 2683–2689).Google Scholar
  3. Blickhan, R., & Full, R. J. (1987). Locomotion energetics of ghost crab: II. Mechanics of the center of mass during walking and running. Journal of Experimental Biology, 130(1), 155–174.Google Scholar
  4. Blickhan, R., & Full, R. J. (1993). Similarity in multilegged locomotion: Bouncing like a monopode. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 173, 509–517.CrossRefGoogle Scholar
  5. Cavagna, G. A., Heglund, N. C., & Taylor, C. R. (1977). Mechanical work in terrestrial locomotion: Two basic mechanisms for minimizing energy expenditure. American Journal of Physiology- Regulatory, Integrative and Comparative Physiology, 233, 243–261.Google Scholar
  6. Cham, J. G., Bailey, S. A., Clark, J. E., Full, R. J., & Cutkosky, M. R. (2002). Fast and robust: Hexapedal robots via shape deposition manufacturing. The International Journal of Robotics Research, 21(10–11), 869–882.CrossRefGoogle Scholar
  7. Choset, H., Burgard, W., Hutchinson, S., Kantor, G., Kavraki, L. E., Lynch, K., et al. (2005). Principles of robot motion: Theory, algorithms, and implementation. Cambridge, MA: MIT Press.Google Scholar
  8. Delmotte, F., Mehta, T., & Egerstedt, M. (2008). A software tool for hybrid control. IEEE Robotics Automation Magazine, 15(1), 87–95.CrossRefGoogle Scholar
  9. Do Carmo, M. P. (1976). Differential geometry of curves and surfaces. Englewood Cliffs, NJ: Prentice-Hall.MATHGoogle Scholar
  10. Frazzoli, E., Dahleh, M. A., & Feron, E. (2005). Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Transactions on Robotics, 21(6), 1077–1091.CrossRefGoogle Scholar
  11. Full, R., & Koditschek, D. (1999). Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202, 3325–3332.Google Scholar
  12. Garcia Bermudez, F., Julian, R., Haldane, D., Abbeel, P., & Fearing, R. (2012). Performance analysis and terrain classification for a legged robot over rough terrain. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, (pp. 513–519).Google Scholar
  13. Haldane, D. W., Peterson, K. C., Bermudez, F. L. G., & Fearing, R. S. (2013). Animal-inspired design and aerodynamic stabilization of a hexapedal millirobot. In: Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, (pp. 3279–3286).Google Scholar
  14. Hoffman, K., Wood, R. (2010). Towards a multi-segment ambulatory microrobot. In: Proceedings of the IEEE International Conference on Robotics and Automation, (pp. 1196–1202).Google Scholar
  15. Holmes, P., Full, R. J., Koditschek, D. E., & Guckenheimer, J. (2006). The dynamics of legged locomotion: Models, analyses, and challenges. SIAM Review, 48(2), 207–304.CrossRefMATHMathSciNetGoogle Scholar
  16. Hoover, A. M., Steltz, E., Fearing, R. S. (2008). RoACH: An autonomous 2.4g crawling hexapod robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, (pp. 26–33).Google Scholar
  17. Hoover, A. M., Burden, S., Fu, X. Y., Sastry, S., & Fearing, R. S. (2010). Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot. In: Proceedings of the IEEE International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, (pp. 869–876).Google Scholar
  18. Jindrich, D., & Full, R. (1999). Many-legged maneuverability: Dynamics of turning in hexapods. The Journal of Experimental Biology, 202, 1603–1623.Google Scholar
  19. Karydis, K., Poulakakis, I., & Tanner, H. G. (2012). A switching kinematic model for an octapedal robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, (pp. 507–512).Google Scholar
  20. Karydis, K., Poulakakis, I., & Tanner, H. G. (2013). Probabilistic validation of a stochastic kinematic model for an eight-legged robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, (pp. 2562–2567).Google Scholar
  21. Kim, S., Clark, J. E., & Cutkosky, M. R. (2006). iSprawl: Design and tuning for high-speed autonomous open-loop running. The International Journal of Robotics Research, 25(9), 903–912.CrossRefGoogle Scholar
  22. Kohut, N., Hoover, A., Ma, K., Baek, S., & Fearing, R. (2011). MEDIC: A legged millirobot utilizing novel obstacle traversal. In: Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, (pp. 802–808).Google Scholar
  23. Lambrecht, B., Horchler, A. D., Quinn, R. (2005) A small, insect-inspired robot that runs and jumps. In: Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, (pp. 1240–1245).Google Scholar
  24. LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press.CrossRefMATHGoogle Scholar
  25. Li, C., Hoover, A. M., Birkmeyer, P., Umbanhowar, P. B., Fearing, R. S., Goldman, D. I. (2010). Systematic study of the performance of small robots on controlled laboratory substrates. In: Proceedings of the SPIE Conference on Micro- and Nanotechnology Sensors, Systems, and Applications II, Orlando, FL, (vol. 7679, pp. 76,790Z–13).Google Scholar
  26. Martin, P., Johnson, E., Murphey, T., & Egerstedt, M. (2011). Constructing and implementing motion programs for robotic marionettes. IEEE Transactions on Automatic Control, 56(4), 902–907.CrossRefMathSciNetGoogle Scholar
  27. Mongeau, J.-M., McRae, B., Jusufi, A., Birkmeyer, P., Hoover, A. M., Fearing, R., et al. (2012). Rapid inversion: Running animals and robots swing like a pendulum under ledges. PLoS ONE, 7(6), e38003.CrossRefGoogle Scholar
  28. Morrey, J. M., Lambrecht, B., Horchler, A. D., Ritzmann, R. E., & Quinn, R. D. (2003). Highly mobile and robust small quadruped robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, NV, (vol. 1, pp. 82–87).Google Scholar
  29. Norton, R. (2008). Design of machinery. New York, NY: McGraw Hill.Google Scholar
  30. Proctor, J., & Holmes, P. (2008). Steering by transient destabilization in piecewise-holonomic models of legged locomotion. Regular and Chaotic Dynamics, 13(4), 267–282.CrossRefMATHMathSciNetGoogle Scholar
  31. Pullin, A., Kohut, N., Zarrouk, D., & Fearing, R. (2012). Dynamic turning of 13 cm robot comparing tail and differential drive. In: Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, (pp. 5086–5093).Google Scholar
  32. Qian, F., Zhang, T., Li, C., Masarati, P., Hoover, A., Birkmeyer, P., Pullin, A., Fearing R., Goldman D.I. (2012). Walking and running on yielding and fluidizing ground. In: Proceedings of Robotics: Science and Systems, Sydney, Australia.Google Scholar
  33. Schmitt, J., & Holmes, P. (2000a). Mechanical models for insect locomotion: Dynamics and stability in the horizontal plane-II application. Biological Cybernetics, 83(6), 517–527.CrossRefMATHGoogle Scholar
  34. Schmitt, J., & Holmes, P. (2000b). Mechanical models for insect locomotion: Dynamics and stability in the horizontal plane I theory. Biological Cybernetics, 83(6), 501–515.CrossRefMATHGoogle Scholar
  35. Seipel, J. E., Holmes, P. J., & Full, R. J. (2004). Dynamics and stability of insect locomotion: A hexapedal model for horizontal plane motions. Biological Cybernetics, 91(2), 76–90.CrossRefMATHGoogle Scholar
  36. Spence, A. J., Revzen, S., Seipel, J. E., Mullens, C., & Full, R. J. (2010). Insects running on elastic surfaces. Journal of Experimental Biology, 213, 1907–1920.CrossRefGoogle Scholar
  37. Stoker, J. J. (1969). Differential geometry. New York, NY: Wiley-Interscience.MATHGoogle Scholar
  38. Wood, R., Avadhanula, S., Sahai, R., Steltz, E., & Fearing, R. (2008). Microrobot design using fiber reinforced composites. Journal of Mechanical Design, 130(5), 1–11.CrossRefGoogle Scholar
  39. Yumaryanto, A., Ana, J., & Lee, S. (2006). A cockroach-inspired hexapod robot actuated by LIPCA. In: Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand, (pp. 1–6).Google Scholar
  40. Zarrouk, D., & Fearing, R. (2012). Compliance-based dynamic steering for hexapods. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, (pp. 3093–3098).Google Scholar
  41. Zarrouk, D., Pullin, A., Kohut, N., & Fearing, R. (2013). STAR—a sprawl tuned autonomous robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, (pp. 20–25).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Konstantinos Karydis
    • 1
  • Yan Liu
    • 1
  • Ioannis Poulakakis
    • 1
  • Herbert G. Tanner
    • 1
  1. 1.University of DelawareNewarkUSA

Personalised recommendations