Autonomous Robots

, Volume 38, Issue 2, pp 143–160 | Cite as

Incremental topological segmentation for semi-structured environments using discretized GVG

Article

Abstract

Over the past few decades, topological segmentation has been much studied, especially for structured environments. In this work, we first propose a set of criteria to assess the quality of topological segmentation, especially for semi-structured environments in 2D. These criteria provide a general benchmark for different segmentation algorithms. Then we introduce an incremental approach to create topological segmentation for semi-structured environments. Our novel approach is based on spectral clustering of an incremental generalized Voronoi decomposition of discretized metric maps. It extracts sparse spatial information from the maps, and builds an environment model which aims at simplifying the navigation task for mobile robots. Experimental results in real environments show the robustness and the quality of the topological map created by the proposed method. Extended experiments for urban search and rescue missions are performed to show the global consistency of the proposed incremental segmentation method using six different trails, during which the test robot traveled 1.8 km in total.

Keywords

Topological mapping Search and rescue Generalized Voronoi graph 

Notes

Acknowledgments

This work was supported by HKUST project IGN13EG03; General Research Fund by Research Grants Council Hong Kong, “Heterogeneous multi-robot systems for hospital services (HeMRS)”, 16206014; partially supported by the EU FP7 project NIFTi (contract # 247870) and EU FP7 TRADR project (contract 609763).

References

  1. Ahn, S., Doh, N. L., Lee, K., & Chung, W. K. (2003). Incremental and robust construction of generalized Voronoi graph (GVG) for mobile guide robot. In: Proceedings. 2003 IEEE/RSJ International Conference on Intelligent robots and systems (IROS 2003) (Vols. 3, 4, pp. 3757–3762), doi:10.1109/IROS.2003.1249739.
  2. Aurenhammer, F. (1991). Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Computing Surveys (CSUR), 23(3), 345–05.CrossRefGoogle Scholar
  3. Baber, C., Houghton, R., McMaster, R., Salmon, P., Stanton, N., Stewart, R., et al. (2004). Field studies in the emergency services. HFI-DTC Technical Report/WP, I1.1/1, 1.Google Scholar
  4. Balaguer, B., Balakirsky, S., Carpin, S., & Visser, A. (2009). Evaluating maps produced by urban search and rescue robots: Lessons learned from robocup. Autonomous Robots, 27(4), 449–64.CrossRefGoogle Scholar
  5. Barraquand, J., & Latombe, J. (1991). Robot motion planning: A distributed representation approach. The International Journal of Robotics Research, 10(6), 628.CrossRefGoogle Scholar
  6. Beeson, P. (2008). Creating and utilizing symbolic representations of spatial knowledge using mobile robots. PhD thesis, The University of Texas at Austin.Google Scholar
  7. Beeson, P., Modayil, J., & Kuipers, B. (2010). Factoring the mapping problem: Mobile robot map-building in the hybrid spatial semantic hierarchy. The International Journal of Robotics Research, 29(4), 428–59.CrossRefGoogle Scholar
  8. Blanco, D., Boada, B., Moreno, L., & Salichs, M. (2000). Local mapping from online laser voronoi extraction. In: Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Vol. 1, pp 103–108).Google Scholar
  9. Blanco, J., Fernández-Madrigal, J., & Gonzalez, J. (2008). Toward a unified bayesian approach to hybrid metric-topological slam. IEEE Transactions on Robotics, 24(2), 259–70.CrossRefGoogle Scholar
  10. Brunskill, E., Kollar, T., & Roy, N. (2007). Topological mapping using spectral clustering and classification. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2007) (pp. 3491–3496).Google Scholar
  11. Burke, J., Murphy, R., Rogers, E., Lumelsky, V., & Scholtz, J. (2004). Final report for the DARPA/NSF interdisciplinary study on human-robot interaction. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 34(2), 103–12.CrossRefGoogle Scholar
  12. Choi, J., Choi, M., Chung, W. K. (2009a). Incremental topological modeling using sonar gridmap in home environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (pp. 3582–3587). doi:10.1109/IROS.2009.5354247, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5354247
  13. Choi, J., Choi, M., Lee, K., & Chung, W. K. (2009b). Topological modeling and classification in home environment using sonar gridmap. In: Proceedings of the IEEE International Conference on Robotics and Automation (pp. 3892–3898).Google Scholar
  14. Choi, J., Choi, M., Nam, S., & Chung, W. (2011). Autonomous topological modeling of a home environment and topological localization using a sonar grid map. Autonomous Robots, 30(4), 351–68.CrossRefGoogle Scholar
  15. Choi, J., Choi, M., Suh, I. H., & Chung W. K. (2010). Topological localization using sonar gridmap matching in home environment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE (pp. 4910–4915).Google Scholar
  16. Choset, H. (1997). Incremental construction of the generalized Voronoi diagram, the generalized Voronoi graph, and the hierarchical generalized Voronoi graph. In: 1st CGC Workshop on Computation Geometry (Vol. 2, Issue 3).Google Scholar
  17. Choset, H., & Nagatani, K. (2001). Topological simultaneous localization and mapping (slam): Toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation, 17(2), 125–37.CrossRefGoogle Scholar
  18. Civera, J., Davison, A. J., & Montiel, J. (2008). Inverse depth parametrization for monocular slam. IEEE Transactions on Robotics, 24(5), 932–45.CrossRefGoogle Scholar
  19. Dolgov, D., & Thrun, S. (2009). Autonomous driving in semi-structured environments: Mapping and planning. In: : Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’09), IEEE (pp. 3407–3414).Google Scholar
  20. Drysdale, R, III. (1979). Generalized voronoi diagrams and geometric searching. Stanford: Stanford University.Google Scholar
  21. Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer, 22(6), 46–57.CrossRefGoogle Scholar
  22. Fabri, A., & Pion, S. (2009). CGAL: The computational geometry algorithms library. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM (pp. 538–539).Google Scholar
  23. Friedman, S., Pasula, H., & Fox, D. (2007). Voronoi random fields: Extracting the topological structure of indoor environments via place labeling. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (Vol. 35)..Google Scholar
  24. Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernandez-Madrigal, J., & González, J. (2005). Multi-hierarchical semantic maps for mobile robotics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005 (IROS 2005) (pp. 2278–2283).Google Scholar
  25. Gianni, M., Papadakis, P., Pirri, F., Liu, M., Pomerleau, F., Colas, F., Zimmermann, K., Svoboda, T., Petricek, T., & Kruijff, G., et al. (2011). A unified framework for planning and execution-monitoring of mobile robots. In: Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence.Google Scholar
  26. Hagen, L., & Kahng, A. (1992). New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(9), 1074–85.CrossRefGoogle Scholar
  27. Kalra, N., Ferguson, D., & Stentz, A. (2009). Incremental reconstruction of generalized Voronoi diagrams on grids. Robotics and Autonomous Systems, 57(2), 123–8.CrossRefGoogle Scholar
  28. Karavelas, M. (2004). A robust and efficient implementation for the segment voronoi diagram. In: International Symposium on Voronoi Diagrams in Science and Engineering, Citeseer (pp. 51–62).Google Scholar
  29. Kruijff, G. J., Colas, F., Svoboda, T., van Diggelen, J., Balmer, P., Pirri, F., & Worst, R. (2012a). Designing intelligent robots for human-robot teaming in Urban Search & Rescue. In: AAAI 2012 Spring Symposium on Designing Intelligent Robots, AAAI.Google Scholar
  30. Kruijff, G. J., Janicek, M., Keshavdas, S., Larochelle, B., Zender, H., Smets, N., Mioch, T., Neerincx, M., van Diggelen, J., Colas, F., Liu, M., Pomerleau, F., Siegwart, R., Hlavac, V., Svoboda, T., Petricke, T., Reinstein, M., Zimmerman, K., Pirri, F., & Gianni, M. (2012b). Experience in system design for human–robot teaming in Urban Search & Rescue. In: Field and Service Robotics. London: Springer.Google Scholar
  31. Latecki, L., & Lakämper, R. (1999). Convexity rule for shape decomposition based on discrete contour evolution. Computer Vision and Image Understanding, 73(3), 441–54.CrossRefGoogle Scholar
  32. Lau, B., Sprunk, C., & Burgard, W. (2010). Improved updating of euclidean distance maps and Voronoi diagrams. In: IEEE International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan.Google Scholar
  33. Lee, Y., Kwon, T., & Song, J. (2007). Slam of a mobile robot using thinning-based topological information. International Journal of Control Automation and Systems, 5(5), 577.Google Scholar
  34. Liu, M., & Siegwart, R. (2012). DP-FACT: Towards topological mapping and scene recognition with color for omnidirectional camera. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google Scholar
  35. Liu, M., & Siegwart, R. (2013). Topological mapping and scene recognition with lightweight color descriptors for an omnidirectional camera. IEEE Transactions on Robotics, 29, 1353–1365.CrossRefGoogle Scholar
  36. Liu, M., Davide Scaramuzza, R. S., Cédric P., & Chen, Q. (2009). Scene recognition with omnidirectional vision for topological map using lightweight adaptive descriptors. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009.Google Scholar
  37. Liu, M., Colas, F., & Siegwart, R. (2011). Regional topological segmentation based on mutual information graphs. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2011), Shanghai.Google Scholar
  38. Liu, M., Colas, F., Pomerleau, F., & Siegwart, R. (2012a). A Markov semi-supervised clustering approach and its application in topological map extraction. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Google Scholar
  39. Liu, M., Wang, L., & Siegwart, R. (2012b). DP-fusion: A generic framework for online multi sensor recognition. In: IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), IEEE.Google Scholar
  40. Luxburg, U. V. (2006). A tutorial on spectral clustering. Statistics and Computing, (pp. 395–416). doi:10.1007/s11222-007-9033-z.
  41. McNamara, T. (1986). Mental representations of spatial relations 1. Cognitive Psychology, 18(1), 87–121.CrossRefGoogle Scholar
  42. Nadler, B., & Galun, M. (2007). Fundamental limitations of spectral clustering. Advances in Neural Information Processing Systems, 19, 1017.Google Scholar
  43. Ranganathan, P., Hayet, J., Devy, M., Hutchinson, S., & Lerasle, F. (2002). Topological navigation and qualitative localization for indoor environment using multi-sensory perception. Robotics and Autonomous systems, 41(2), 137–144.CrossRefGoogle Scholar
  44. Rosenberg, A., & Hirschberg, J. (2007). V-measure: A conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 410–420).Google Scholar
  45. Rosin, P. (2000). Shape partitioning by convexity. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 30(2), 202–210.CrossRefMathSciNetGoogle Scholar
  46. Ryu, B., & Yang, H. (1999). Integration of reactive behaviors and enhanced topological map for robust mobile robot navigation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 29(5), 474–485.CrossRefMATHGoogle Scholar
  47. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.CrossRefGoogle Scholar
  48. Shi, L., Kodagoda, S., & Dissanayake, G. (2012). Application of semi-supervised learning with Voronoi graph for place classification. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2012).Google Scholar
  49. Song, J., & Liu, M. (2013). A Hidden Markov model approach for Voronoi localization. In: IEEE International Conference on Robotics and Biomimetics (ROBIO).Google Scholar
  50. Strasdat, H., Montiel, J., & Davison, A. J. (2010). Real-time monocular slam: Why filter? In: The 2010 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2657–2664).Google Scholar
  51. Tapus, A., & Siegwart, R. (2005). Incremental robot mapping with fingerprints of places. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005) (pp. 2429–2434).Google Scholar
  52. Thrun, S. (1998). Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence, 99(1), 21–71.CrossRefMATHGoogle Scholar
  53. Tomatis, N., Nourbakhsh, I., & Siegwart, R. (2003). Hybrid simultaneous localization and map building: A natural integration of topological and metric. Robotics and Autonomous systems, 44(1), 3–14.CrossRefGoogle Scholar
  54. Zelnik-Manor, L., & Perona, P. (2004). Self-tuning spectral clustering. Advances in Neural Information Processing Systems, 17(1601–1608), 16.Google Scholar
  55. Zender, H., Martínez Mozos, O., Jensfelt, P., Kruijff, G., & Burgard, W. (2008). Conceptual spatial representations for indoor mobile robots. Robotics and Autonomous Systems, 56(6), 493–502.Google Scholar
  56. Zivkovic, Z., Bakker, B., & Krose, B. (2006). Hierarchical map building and planning based on graph partitioning. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, IEEE (pp. 803–809).Google Scholar
  57. Zwynsvoorde, D. V., Simeon, T., & Alami, R. (2000). Incremental topological modeling using local Voronoi-like graphs. In: Proceedings 2000 IEEE/RSJ International Conference on Intelligence Robots and Systems (IROS 2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ming Liu
    • 1
  • Francis Colas
    • 2
  • Luc Oth
    • 2
  • Roland Siegwart
    • 2
  1. 1.Electronics and Computer Engineering DepartmentThe Hong Kong University of Science and TechnologyKowloonHong Kong
  2. 2.Autonomous Systems LabETH ZurichZurichSwitzerland

Personalised recommendations