Autonomous Robots

, Volume 36, Issue 1–2, pp 93–107 | Cite as

A variable compliance, soft gripper

  • M. E. Giannaccini
  • I. Georgilas
  • I. Horsfield
  • B. H. P. M. Peiris
  • A. Lenz
  • A. G. Pipe
  • S. Dogramadzi
Article

Abstract

Autonomous grasping is an important but challenging task and has therefore been intensively addressed by the robotics community. One of the important issues is the ability of the grasping device to accommodate varying object shapes in order to form a stable, multi-point grasp. Particularly in the human environment, where robots are faced with a vast set of objects varying in shape and size, a versatile grasping device is highly desirable. Solutions to this problem have often involved discrete continuum structures that typically comprise of compliant sections interconnected with mechanically rigid parts. Such devices require a more complex control and planning of the grasping action than intrinsically compliant structures which passively adapt to complex shapes objects. In this paper, we present a low-cost, soft cable-driven gripper, featuring no stiff sections, which is able to adapt to a wide range of objects due to its entirely soft structure. Its versatility is demonstrated in several experiments. In addition, we also show how its compliance can be passively varied to ensure a compliant but also stable and safe grasp.

Keywords

Grasping Soft robotics Continuum robot Variable compliance Shape invariant grasping 

Supplementary material

Supplementary material 1 (avi 13309 KB)

References

  1. Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M. R., et al. (2010). Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences, 107(44), 18809–18814.Google Scholar
  2. Calisti, M., Arienti, A., Giannaccini, M. E., Follador, M., Giorelli, M., Cianchetti, M., Mazzolai, B., Laschi, C., & Dario P. Study and fabrication of bioinspired octopus arm mockups tested on a multipurpose platform. In 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (pp. 461–466).Google Scholar
  3. Cheng, N. G., Lobovsky, M. B., Keating, S. J., Setapen, A. M., Gero, K. I., Hosoi, A. E., & Iagnemma, K. D. (2012). Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media. In 2012 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4328–4333).Google Scholar
  4. Deimel, R., & Brock, O. (2013). A compliant hand based on a novel pneumatic actuator. In 2013 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2039–2045).Google Scholar
  5. Dollar, A. M., & Howe, R. D. (2010). The highly adaptive SDM hand: Design and performance evaluation. The International Journal of Robotics Research, 29(5), 585–597.CrossRefGoogle Scholar
  6. Eppner, C., Bartels, G., & Brock, O. (2012). A compliance-centric view of grasping. Technical Report.Google Scholar
  7. Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., & Kragic, D. (2009). A comprehensive grasp taxonomy. In Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation (pp. 2–3).Google Scholar
  8. FESTO. Retireved February 26, 2013, from http://www.festo.com/rep/encorp/assets/pdf/BHAen.phf.
  9. Giannaccini, M., Dogramadzi, S., & Pipe, T. (2011). Solutions for a variable compliance gripper design. In Towards Autonomous Robotic Systems. Lecture Note in Computer Science (Vol. 6856, pp. 410–411).Google Scholar
  10. Giannaccini, M. E., Zheng, Y., Dogramadzi, S., & Pipe, T. (2012). Towards a variable compliance hydrostatic skeleton inspired gripper. In 2012 4th IEEE RAS and EMBS International Conference onBiomedical Robotics and Biomechatronics (BioRob) (pp. 246–251).Google Scholar
  11. Grebenstein, M., Albu-Schaffer, A., Bahls, T., Chalon, M., Eiberger, O., Friedl, W., Gruber, R. et al. (2011). The dlr hand arm system. In 2011 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3175–3182).Google Scholar
  12. Hannan, M. W., & Walker, I. D. (2003). Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. Journal of Robotic Systems, 20(2), 45–63.CrossRefMATHGoogle Scholar
  13. Hirose, S., & Umetani, Y. (1978). The development of soft gripper for the versatile robot hand. Mechanism and Machine Theory, 13(3), 351–359.CrossRefGoogle Scholar
  14. Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X., & Whitesides, G. M. (2011). Soft robotics for chemists. Angewandte Chemie, 123(8), 1930–1935.Google Scholar
  15. INTRO project. Retrieved February 27, 2013, from http://introbotics.eu/.
  16. Kier, W. M. (2012). The diversity of hydrostatic skeletons. The Journal of Experimental Biology, 215(8), 1247–1257.Google Scholar
  17. Kier, W. M., & Smith, K. K. (1985). Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats. Zoological Journal of the Linnean Society, 83(4), 307–324.CrossRefGoogle Scholar
  18. McMahan, W., Chitrakaran, V., Csencsits, M., Dawson, D., Walker, I. D., Jones, B., Pritts, A. M., Dienno, Grissom, D. M., & Rahn, C. D. (2006). Field trials and testing of the OctArm continuum manipulator. In Proceedings of 2006 IEEE International Conference on Robotics and Automation (ICRA 2006) (pp. 2336–2341).Google Scholar
  19. Menciassi, A., Accoto, D., Gorini, S., & Dario, P. (2006). Development of a biomimetic miniature robotic crawler. Autonomous Robots, 21(2), 155–163.CrossRefGoogle Scholar
  20. Pfeifer, R., Lungarella, M., & Iida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science, 318(5853), 1088–1093.Google Scholar
  21. SHADOW. Retrieved February 26, 2013, from http://www.shadowrobot.com/hand/motorhand.shtml.
  22. Taylor, J. R., & Kier, W. M. (2003). Switching skeletons: Hydrostatic support in molting crabs. Science, 301(5630), 209–210.CrossRefGoogle Scholar
  23. Trimmer, B. A., Takesian, A., Sweet, B., Rogers, C. B., Hake, D. C., & Rogers, D. J. (2006). Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots. In 7th International Symposium on Technology and the Mine Problem (Vol. 1, pp. 1–10). Monterey, CA: Mine Warfare Association.Google Scholar
  24. Vaidyanathan, R., Chiel, H. J., & Quinn, R. D. (2000). A hydrostatic robot for marine applications. Robotics and Autonomous Systems, 30(1), 103–113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. E. Giannaccini
    • 1
  • I. Georgilas
    • 1
  • I. Horsfield
    • 1
  • B. H. P. M. Peiris
    • 1
  • A. Lenz
    • 1
  • A. G. Pipe
    • 1
  • S. Dogramadzi
    • 1
  1. 1.Bristol Robotics LaboratoryBristolUK

Personalised recommendations