Autonomous Robots

, Volume 36, Issue 1–2, pp 11–30 | Cite as

An autonomous manipulation system based on force control and optimization

  • Ludovic Righetti
  • Mrinal Kalakrishnan
  • Peter Pastor
  • Jonathan Binney
  • Jonathan Kelly
  • Randolph C. Voorhies
  • Gaurav S. Sukhatme
  • Stefan Schaal
Article

Abstract

In this paper we present an architecture for autonomous manipulation. Our approach is based on the belief that contact interactions during manipulation should be exploited to improve dexterity and that optimizing motion plans is useful to create more robust and repeatable manipulation behaviors. We therefore propose an architecture where state of the art force/torque control and optimization-based motion planning are the core components of the system. We give a detailed description of the modules that constitute the complete system and discuss the challenges inherent to creating such a system. We present experimental results for several grasping and manipulation tasks to demonstrate the performance and robustness of our approach.

Keywords

Grasping Manipulation Force control Optimization 

Supplementary material

Supplementary material 1 (mov 32813 KB)

References

  1. An, C., Atkeson, C., & Hollerbach, J. (1985). Estimation of inertial parameters of rigid body links of manipulators. In IEEE Conference on Decision and Control (pp. 990–995).Google Scholar
  2. Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., et al. (2006). Armar-III: An integrated humanoid platform for sensory–motor control. In IEEE-RAS International Conference on Humanoid Robots (pp. 169–175).Google Scholar
  3. Atkeson, C., An, C., & Hollerbach, J. (1985). Rigid body load identification for manipulators. In IEEE Conference on Decision and Control (pp. 996–1002).Google Scholar
  4. Axelrod, B., & Huang, W. (2012). Improving hand-eye calibration for robotic grasping and manipulation. In IEEE International Conference on Technologies for Practical Robot Applications (pp. 121–126).Google Scholar
  5. Bagnell, J. A. D., Cavalcanti, F., Cui, L., Galluzzo, T., Hebert, M., Kazemi, M., et al. (2012). An integrated system for autonomous robotics manipulation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2955–2962).Google Scholar
  6. Balasubramanian, R., Xu, L., Brook, P. D., Smith, J. R., & Matsuoka, Y. (2012). Physical human interactive guidance: Identifying grasping principles from human-planned grasps. IEEE Transactions on Robotics, 28(4), 899–910.CrossRefGoogle Scholar
  7. Beetz, M., Klank, U., Kresse, I., Maldonado, A., Mösenlechner, L., Pangercic, D., et al. (2011). Robotic roommates making pancakes. In IEEE-RAS International Conference on Humanoid Robots.Google Scholar
  8. Berenson, D., Srinivasa, S. S., Ferguson, D., Collet, A., & Kuffner, J. (2009). Manipulation planning with workspace goal regions. In IEEE International Conference on Robotics and Automation.Google Scholar
  9. Bicchi, A. (1995). On the closure-properties of robotic grasping. The International Journal of Robotics Research, 14(4), 319–334.CrossRefGoogle Scholar
  10. Bicchi, A., & Kumar, V. (2000). Robotic grasping and contact: A review. In IEEE International Conference on Robotics and Automation (pp. 348–353).Google Scholar
  11. Bohg, J., & Kragic, D. (2010). Learning grasping points with shape context. Robotics and Autonomous Systems, 58, 362–377.CrossRefGoogle Scholar
  12. Bohg, J., Morales, A., Asfour, T., Kragic, D. (2013). Data-driven grasp synthesis: A survey. In IEEE Transactions on Robotics (in submission).Google Scholar
  13. Bruyninckx, H., & De Schutter, J. (1996). Specification of force-controlled actions in the “task frame formalism”: A synthesis. IEEE Transactions on Robotics and Automation, 12(4), 581–589.CrossRefGoogle Scholar
  14. Calinon, S., Guenter, F., & Billard, A. (2007). On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(2), 286–298.CrossRefGoogle Scholar
  15. Chiaverini, S. (1997). Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation, 13(3), 398–410.CrossRefGoogle Scholar
  16. Chiaverini, S., & Sciavicco, L. (1993). The parallel approach to force/position control of robotic manipulators. IEEE Transactions on Robotics and Automation, 9(4), 361–373.CrossRefGoogle Scholar
  17. Chiaverini, S., Siciliano, B., & Villani, L. (1999). A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Transactions on Mechatronics, 4(3), 273–285.CrossRefGoogle Scholar
  18. Chitta, S., Jones, E., Ciocarlie, M., & Hsiao, K. (2012). Perception, planning, and execution for mobile manipulation in unstructured environments. In Special Issue on Mobile Manipulation: IEEE Robotics and Automation Magazine (Vol. 19).Google Scholar
  19. Diankov, R., Ratliff, N., Ferguson, D., Srinivasa, S., Kuffner., J., (2008). Bispace planning: Concurrent multi-space exploration. In Robotics: Science and Systems (R:SS).Google Scholar
  20. Featherstone, R. (1987). Robot dynamics algorithms. Boston: Kluwer Academic Publishers.Google Scholar
  21. Hauser, K., Bretl, T., Latombe, J. C., Harada, K., & Wilcox, B. (2008). Motion planning for legged robots on varied terrain. The International Journal of Robotics Research, 27, 1325– 1349.CrossRefGoogle Scholar
  22. Hauser, K., & Ng-Thow-Hing, V. (2010). Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts. In IEEE International Conference on Robotics and Automation.Google Scholar
  23. Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Asfour, T., & Schaal, S. (2012). Template-based learning of grasp selection. In IEEE International Conference on Robotics and Automation (pp. 2379–2384).Google Scholar
  24. Herzog, A., Pastor, P., Kalakrishnan, M., Righetti, L., Bohg, J., Asfour, T., et al. (2013). Learning of grasp selection based on shape-templates. In Autonomous Robots Journal Special Issue: Autonomous Grasping and Manipulation. doi:10.1007/s10514-013-9366-8
  25. Hogan, N. (1985). Impedance control: An approach to manipulation. Journal of Dynamic Systems, Measurement, and Control (Transactions of the ASME), 107(1), 1–24.Google Scholar
  26. Hollerbach, J., Khalil, W., & Gautier, M. (2008). Model identification. In B. Siciliano & O. Khatib (Eds.), Springer Handbook of Robotics (Chap. 14, pp. 321–344). Berlin: Springer.Google Scholar
  27. Hsiao, K., Chitta, S., Ciocarlie, M., & Jones, E. (2010). Contact-reactive grasping of objects with partial shape information. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1228–1235).Google Scholar
  28. Hubert, U., Stückler, J., & Behnke, S. (2012). Bayesian calibration of the hand-eye kinematics of an anthropomorphic robot. In IEEE-RAS International Conference on Humanoid Robots.Google Scholar
  29. Hudson, N., Howard, T., Ma, J., Jain, A., Bajracharya, M., Myint, S., et al. (2012). End-to-end dexterous manipulation with deliberate interactive estimation. In IEEE International Conference on Robotics and Automation (pp. 2371–2378).Google Scholar
  30. Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for learning motor primitives. In Advances in Neural Information Processing Systems (pp. 1547–1554).Google Scholar
  31. Kaelbling, L. P., & Lozano-Pérez, T. (2011). Hierarchical task and motion planning in the now. In IEEE International Conference on Robotics and Automation (pp. 1470–1477).Google Scholar
  32. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S. (2011). STOMP: Stochastic trajectory optimization for motion planning. In IEEE International Conference on Robotics and Automation (pp. 4569–4574).Google Scholar
  33. Kalakrishnan, M., Pastor, P., Righetti, L., & Schaal, S. (2013). Learning objective functions for manipulation. In IEEE International Conference on Robotics and Automation.Google Scholar
  34. Kalakrishnan, M., Righetti, L., Pastor, P., & Schaal, S. (2011). Learning force control policies for compliant manipulation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4639–4644).Google Scholar
  35. Kazemi, M., Valois, J. S., Bagnell, J. A., Pollard, N. (2012). Robust object grasping using force compliant motion primitives. In Proceedings of Robotics: Science and Systems.Google Scholar
  36. Kröger, T., & Wahl, F. M. (2010). Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events. IEEE Transactions on Robotics, 26(1), 94–111.CrossRefGoogle Scholar
  37. Lengagne, S., Mathieu, P., Kheddar, A., & Yoshida, E. (2010). Generation of dynamic motions under continuous constraints: Efficient computation using B-Splines and Taylor polynomials. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 698–703).Google Scholar
  38. Li, Y., & Pollard, N. (2005). A shape matching algorithm for synthesizing humanlike enveloping grasps. In IEEE-RAS International Conference on Humanoid Robots (pp. 442–449).Google Scholar
  39. Majarena, A. C., Santolaria, J., Samper, D., & Aguilar, J. J. (2010). An overview of kinematic and calibration models using internal/external sensors or constraints to improve the behavior of spatial parallel mechanisms. Sensors, 10(11), 10256–10297.CrossRefGoogle Scholar
  40. Miller, A., & Allen, P. (2004). Graspit!: A versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine, 11(4), 110–122.CrossRefGoogle Scholar
  41. Mordatch, I., Todorov, E., & Popović, Z. (2012). Discovery of complex behaviors through contact-invariant optimization. In Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (pp. 1–8).Google Scholar
  42. Nakanishi, J., Cory, R., Mistry, M., Peters, J., & Schaal, S. (2008). Operational space control: A theoretical and empirical comparison. The International Journal of Robotics Research, 27(6), 737–757.CrossRefGoogle Scholar
  43. Niekum, S., Chitta, S., Marthi, B., Osentoski, S., Barto, A. G., (2013). Incremental semantically grounded learning from demonstration. In Robotics: Science and Systems (R:SS).Google Scholar
  44. Pastor, P., Kalakrishnan, M., Binney, J., Kelly, J., Righetti, L., Sukhatme, G., et al. (2013). Learning task error models for manipulation. In IEEE International Conference on Robotics and Automation.Google Scholar
  45. Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., & Schaal, S. (2011). Skill learning and task outcome prediction for manipulation. In IEEE International Conference on Robotics and Automation (pp. 3828–3834).Google Scholar
  46. Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J., Theodorou, E., et al. (2013). From dynamic movement primitives to associative skill memories. Robotics and Autonomous Systems, 61(4), 351–361.CrossRefGoogle Scholar
  47. Pastor, P., Kalakrishnan, M., Righetti, L., & Schaal, S. (2012). Towards associative skill memories. In IEEE-RAS International Conference on Humanoid Robots.Google Scholar
  48. Pastor, P., Righetti, L., Kalakrishnan, M., & Schaal, S. (2011). Online movement adaptation based on previous sensor experiences. In IEEE International Conference on Robotics and Automation (pp. 365–371).Google Scholar
  49. Peters, J., & Schaal, S. (2008). Natural actor critic. Neurocomputing, 71(7–9), 1180–1190.CrossRefGoogle Scholar
  50. Pradeep, V., Konolige, K., & Berger, E. (2010). Calibrating a multi-arm multi-sensor robot: A bundle adjustment approach. In International Symposium on Experimental Robotics.Google Scholar
  51. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., et al. (2009). Ros: An open-source robot operating system. In IEEE International Conference on Robotics and Automation; Workshop on Open Source Software.Google Scholar
  52. Raibert, M., & Craig, J. (1981). Hybrid position/force control of manipulator. Journal of Dynamics Systems, Measurement and Control, 103(2), 126–133.CrossRefGoogle Scholar
  53. Ratliff, N., Zucker, M., Bagnell, J., & Srinivasa, S. (2009). CHOMP: Gradient optimization techniques for efficient motion planning. In: IEEE International Conference on Robotics and Automation (pp. 12–17).Google Scholar
  54. Rusu, R. B., Şucan, I. A., Gerkey, B., Chitta, S., Beetz, M., & Kavraki, L. E. (2009). Real-time perception guided motion planning for a personal robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems.Google Scholar
  55. Schaal, S., (2009). The SL simulation and real-time control software package. Technical Report. University of Southern California. http://www-clmc.usc.edu/publications/S/schaal-TRSL.pdf
  56. Sciavicco, L., & Siciliano, B. (2000). Modelling and control of robot manipulators. Berlin: Springer-Verlag.CrossRefMATHGoogle Scholar
  57. Srinivasa, S., Ferguson, D., Helfrich, C., Berenson, D., Romea, A. C., Diankov, R., et al. (2010). HERB: A home exploring robotic butler. Autonomous Robots, 28(1), 5–20.Google Scholar
  58. Stückler, J., Badami, I., Droeschel, D., Gräve, K., Holz, D., McElhone, M., Nieuwenhuisen, M., Schreiber, M., Schwarz, M., Behnke, S., (2013). Nimbro@home: Winning team of the robocup@home competition 2012. RoboCup 2012, Robot Soccer World Cup XVI.Google Scholar
  59. Toussaint, M., Plath, N., Lang, T., Jetchev, N., (2010). Integrated motor control, planning, grasping and high-level reasoning in a blocks world using probabilistic inference. In IEEE International Conference on Robotics and Automation (pp. 385–391).Google Scholar
  60. Whitney, D. E. (1977). Force feedback control of manipulator fine motions. Journal of Dynamic Systems, Measurement, and Control (Transactions of the ASME), 99(2), 91.CrossRefGoogle Scholar
  61. Ye, Q. (1988). The signed Euclidean distance transform and its applications. In International Conference on Pattern Recognition (pp. 495–499).Google Scholar
  62. Yoshikawa, T. (2000). Force control of robot manipulators. In IEEE International Conference on Robotics and Automation (pp. 220–226).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ludovic Righetti
    • 1
    • 3
  • Mrinal Kalakrishnan
    • 1
  • Peter Pastor
    • 1
  • Jonathan Binney
    • 1
  • Jonathan Kelly
    • 2
  • Randolph C. Voorhies
    • 1
  • Gaurav S. Sukhatme
    • 1
  • Stefan Schaal
    • 1
    • 3
  1. 1.Computer Science DepartmentUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Institute for Aerospace StudiesUniversity of TorontoTorontoCanada
  3. 3.Autonomous Motion DepartmentMax-Planck-Institute for Intelligent SystemsTübingenGermany

Personalised recommendations