Autonomous Robots

, Volume 36, Issue 1–2, pp 67–78 | Cite as

Design and control of a three-fingered tendon-driven robotic hand with active and passive tendons

  • Ryuta Ozawa
  • Kazunori Hashirii
  • Yohtaro Yoshimura
  • Michinori Moriya
  • Hiroaki Kobayashi
Article

Abstract

This paper presents a design of a three-fingered robotic hand driven by active and passive tendons and proposes control methods for this hand. The tendon-driven robotic hand consists of the thumb, the index and the middle fingers. The robotic thumb can move all the joints independently. In contrast, the index and the middle robotic fingers are under-actuated using the combination of active and passive tendons, and move the terminal two joints synchronously, which is one of the important features of the human digits. We present passivity-based impedance and force controllers for tendon-driven robotic fingers and discuss how to combine them for fast and secure grasps. We experimentally validate that the robotic hand moves fast and manipulates an object and demonstrate that the robotic hand grasps objects in diverse ways.

Keywords

Robotic hand Tendon-driven mechanisms Manipulation Design 

References

  1. Abdallah, M. E., Platt R. Jr., Hargrave, B., & Permenter, F. (2011). Position control of tendon-driven fingers with position controlled actuators. In IEEE international conference on robotics and automation, Saint paul, MN (pp. 2859–2864).Google Scholar
  2. Abdallah, M. E., Platt, R, Jr., & Wampler, C. W. (2013). Decoupled torque control of tendon-driven fingers with tension management. The International Journal of Robotics Research, 32(2), 247–258.Google Scholar
  3. Arimoto, S. (1996). Control theory of non-linear mechanical systems: A passivity-based and circuit-theoretic approach. Oxford: Oxford University Press.MATHGoogle Scholar
  4. Bae, J. H., Arimoto, S., & Yoshida, M. (2005). Control and dexterity in robotic pinching under linking of movements of joints like human fingers. In Proceedings of the first international conference on complex medical engineering, Takamatsu, Japan (pp. 899–903).Google Scholar
  5. Birglen, L., Laliberte, T., & Gosselin, C. (2008). Underactuated robotic hands, Springer tracts in advance robotics (Vol. 40). Berlin: Springer.Google Scholar
  6. Bridgwater, L., Ihrke, C., Abdallah, M., Radford, N., Rogers, J., Yayathi, S., Askew, R., & Linn, D. (2012). The robonaut 2 hand. In IEEE international conference on robotics and automation, Saint Paul, MN (pp. 3425–3430).Google Scholar
  7. Brown, C. Y. & Asada, H. H. (2007). Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA (pp. 2877–2882).Google Scholar
  8. Carrozza, M. C. (2004). The SPRING hand: Development of a self-adaptive prosthesis for restoring natural grasping. Autonomous Robots, 16, 125–141.CrossRefGoogle Scholar
  9. Carrozza, M. C., Cappiello, G., Micera, S., Edin, B. B., Beccai, L., & Cipriani, C. (2006). Design of a cybernetic hand for perception and action. Biological Cybernetics, 95, 629–644.CrossRefMATHGoogle Scholar
  10. Catalano, M., Grioli, G., Serio, A., Farnioli, E., Pazza, C., & Bicchi, A. (2012). Adaptive synergies for a humanoid robot hand. In IEEE-RAS international conference on humanoid robots, Osaka, Japan (pp. 7–14).Google Scholar
  11. Cutkosky, M. R. (1989). On grasp choise, grasp models, and the design of hands for manufacturing tasks. IEEE Transactions on Robotics and Automation, 5(3), 269–279.CrossRefMathSciNetGoogle Scholar
  12. Darling, W. G., Cole, K. J., & Miller, G. F. (1994). Coordination of index finger movements. Journal of Biomechanics, 27(4), 479–491.CrossRefGoogle Scholar
  13. Dechev, N., Cleghorn, W., & Naumann, S. (2001). Multiple finger passive adaptive grasp prosthetic hand. Mechanism and Machine Theory, 36, 1157–1173.Google Scholar
  14. Fukaya, N., Toyama, S., Asfour, T., & Dillmann, R. (2000). Design of the tuat/karlsruhe humanoid hand. In Proceedings 2000 IEEE/RSJ international conference on intelligent robots and systems (pp. 1754–1759).Google Scholar
  15. Grebenstein, M., Chalon, M., Hirzinger, G., & Siegwart, R. (2010). Antagonistically driven finger design for the anthropomorphic DLR hand arm system. In Proceedings of IEEE international conference on intelligent robots and systems, Taipei, Taiwan (pp. 609–616).Google Scholar
  16. Hirose, S. & Umetani, Y. (1978). The development of soft gripper for the versatile robothand. Mechanism and Machine Theory, 13, 351–359.Google Scholar
  17. Jacobsen, S. C., Wood, J. E., Knutti, D. F., & Biggers, K. B. (1984). The UTAH/M.I.T. dextrous hand: Work in progress. The International Journal of Robotics Research, 3(4), 21–50.CrossRefGoogle Scholar
  18. Johansson, R. & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56, 550–564.Google Scholar
  19. Kaneko, K., Harada, K., & Kanehiro, F. (2007). Development of multi-fingered hand for life-size humanoid robots. In Proceedings of IEEE international conference on robotics and automation, Roma, Italy (pp. 913–920).Google Scholar
  20. Kawasaki, H., Komatsu, T., & Uchiyama, K. (2002). Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Transactions on Mechatronics, 7(3), 296–303.CrossRefGoogle Scholar
  21. Kobayashi, H., Hyodo, K., & Ogane, D. (1998). On tendon-driven robotic mechanisms with redundant tendons. The International Journal of Robotics Research, 17(5), 561–571.CrossRefGoogle Scholar
  22. Liu, H., Butterfass, J., Knoch, S., Meusel, P., & Hirzinger, G. (1999). A new control strategy for DLR’s multisensory articulated hand. IEEE Control Systems Magazine, 15, 105–110.Google Scholar
  23. Liu, H., Meusel, P., Seitz, N., Willberg, B., Hirzinger, G., Jin, M. H., et al. (2007). The modular multisensory DLR-HIT-hand. Mechanism and Machine Theory, 42, 612–625.CrossRefMATHGoogle Scholar
  24. Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., Palli, G., & Melchiorri, C. (2005). Development of ub hand 3: Early results. In Proceedings of IEEE international conference on robotics and automation, Barcelona, Spain (pp. 4488–4493).Google Scholar
  25. Ma, S., Hirose, S., & Yashinada, H. (1993). Design and experiments for a coupled tendon-driven manipulator. IEEE Control Systems Magazine, 13, 30–36.Google Scholar
  26. Mason, M. T. & Salisbury, J. K. (1985). Robot hands and the mechanics of manipulation. Cambridge: The MIT Press.Google Scholar
  27. Mouri, T., Endo, T., & Kawasaki, H. (2011). Review of gifu hand and its application. Journal of Mechanics, 39, 210–228.Google Scholar
  28. Niikura, R., Kunugi, N., & Koganezawa, K. (2011). Developement of artificial finger using the double planetary gear system. In Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, Budapest, Hungary (pp. 481–486).Google Scholar
  29. Ozawa, R., Arimoto, S., Nakamura, S., & Bae, J. H. (2005). Control of an object with parallel surfaces by a pair of finger robots without object sensing. IEEE Transactions on Robotics, 21(5), 965–976.CrossRefGoogle Scholar
  30. Ozawa, R., Hashirii, K., & Kobayashi, H. (2009). Design and control of underactuated tendon-driven mechanisms. In: Proceedings of IEEE international conference on robotics and automation, Kobe, Japan (pp. 1522–1527). Google Scholar
  31. Ozawa, R. & Moriya, M. (2010). Effects of elasticity on an under-actuated tendon-driven robotic finger. In Proceedings of IEEE international conference on robotics and biomimmetics, Tianjin, China (pp. 891–896).Google Scholar
  32. Santello, M., Flanders, M., & Soechting, J. F. (1998). Postural hand synergies for tool use. The Journal of Neuroscience, 18(23), 10105–10115.Google Scholar
  33. Suzuki, T., Koinuma, M., & Nakamura, Y. (1996). Chaos and nonlinear control of nonholonmic free-joint manipulator. In Proceedings of the IEEE international conference on robotics and automation (pp. 2668–2675).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ryuta Ozawa
    • 1
  • Kazunori Hashirii
    • 2
  • Yohtaro Yoshimura
    • 3
  • Michinori Moriya
    • 4
  • Hiroaki Kobayashi
    • 5
  1. 1.Department of RoboticsRitsumeikan UniversityShiga Japan
  2. 2.Research & Development DivisionNabel Co., Ltd.KyotoJapan
  3. 3.Mitsubishi Electric CorporationTokyoJapan
  4. 4.Construction Machinery Engineering DepartmentKubota CorporationOsakaJapan
  5. 5.Department of Mechanical Engineering InformaticsMeiji UniversityKanagawa Japan

Personalised recommendations