Autonomous Robots

, Volume 36, Issue 4, pp 309–330 | Cite as

Stable grasping under pose uncertainty using tactile feedback

Article

Abstract

This paper deals with the problem of stable grasping under pose uncertainty. Our method utilizes tactile sensing data to estimate grasp stability and make necessary hand adjustments after an initial grasp is established. We first discuss a learning approach to estimating grasp stability based on tactile sensing data. This estimator can be used as an indicator to the stability of the current grasp during a grasping procedure. We then present a tactile experience based hand adjustment algorithm to synthesize a hand adjustment and optimize the hand pose to achieve a stable grasp. Experiments show that our method improves the grasping performance under pose uncertainty.

Keywords

Grasping Uncertainty Robustness  Tactile sensing 

References

  1. Bekiroglu, Y., Laaksonen, J., Jorgensen, J. A., Kyrki, V., & Kragic, D. (2011). Assessing grasp stability based on learning and haptic data. IEEE Transactions on Robotics, 27(3), 616–629. doi:10.1109/TRO.2011.2132870.CrossRefGoogle Scholar
  2. Berenson, D., & Srinivasa, S. (2008). Grasp synthesis in cluttered environments for dexterous hands. In IEEE-RAS International Conference on Humanoid Robots (Humanoids08).Google Scholar
  3. Berenson, D., Srinivasa, S., Kuffner, J. (2009). Addressing pose uncertainty in manipulation planning using task space regions. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009).Google Scholar
  4. Bierbaum, A., & Rambow, M., (2009). Grasp affordances from multi-fingered tactile exploration using dynamic potential fields. In Humanoid Robots 2009, Humanoids 2009 (pp. 168–174). doi:10.1109/ICHR.2009.5379581.
  5. Bohg, J., & Kragic, D. (2010). Learning grasping points with shape context. Robotics and Autonomous Systems, 58, 362–377. doi:10.1016/j.robot.2009.10.003.CrossRefGoogle Scholar
  6. Boularias, A., Kroemer, O., & Peters, J. (2011). Learning robot grasping from 3-d images with markov random fields. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2011 (pp 1548–1553).Google Scholar
  7. Brook, P., Ciocarlie, M., & Hsiao, K. (2011). Collaborative grasp planning with multiple object representations. In IEEE International Conference on Robotics and Automation (ICRA) 2011. (pp 2851–2858). doi:10.1109/ICRA.2011.5980490.
  8. Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm. Accessed 20 July 2013.
  9. Ciocarlie, M., Goldfeder, C., & Allen, P. (2007a). Dimensionality reduction for hand-independent dexterous robotic grasping. In IEEE/RSJ International Conference on Intelligent Robots and Systems (2007), IROS 2007 (pp. 3270–3275). doi:10.1109/IROS.2007.4399227.
  10. Ciocarlie, M., Lackner, C., & Allen, P. (2007b). Soft finger model with adaptive contact geometry for grasping and manipulation tasks. World Haptics Conference (pp. 219–224).Google Scholar
  11. Ciocarlie, M. T., & Allen, P. K. (2009). Hand posture subspaces for dexterous robotic grasping. The International Journal of Robotics Research, 28(7), 851–867.CrossRefGoogle Scholar
  12. Coelho, J. A., & Grupen, R. A. (1997). A control basis for learning multifingered grasps. Journal of Robotic Systems, 14(7), 545–557.CrossRefMATHGoogle Scholar
  13. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. doi:10.1007/BF00994018.MATHGoogle Scholar
  14. Dang, H., & Allen, P. (2012). Learning grasp stability. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp. 2392–2397). doi:10.1109/ICRA.2012.6224754.
  15. Dang, H., Weisz, J., & Allen, P.K. (2011). Blind grasping: Stable robotic grasping using tactile feedback and hand kinematics. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 5917–5922) doi:10.1109/ICRA.2011.5979679.
  16. Detry, R., Ek, C., Madry, M., Piater, J., & Kragic, D. (2012). Generalizing grasps across partly similar objects. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 3791–3797). doi:10.1109/ICRA.2012.6224992.
  17. Diankov, R., & Kuffner, J. (2008). Openrave: A planning architecture for autonomous robotics. Robotics Institute, Pittsburgh, PA, Technical, Report CMU-RI-TR-08-34.Google Scholar
  18. Dogar, M., & Srinivasa, S. (2011). A framework for push-grasping in clutter. In N. R. Hugh Durrant-Whyte & P. Abbeel (Eds.), Robotics: Science and Systems VII. Cambridge, MA: MIT Press.Google Scholar
  19. El-Khoury, S., & Sahbani, A. (2010). A new strategy combining empirical and analytical approaches for grasping unknown 3d objects. Robotics and Autonomous Systems, 58, 497–507.CrossRefGoogle Scholar
  20. Felip, J., Laaksonen, J., Morales, A., & Kyrki, V. (2013). Manipulation primitives: A paradigm for abstraction and execution of grasping and manipulation tasks. Robotics and Autonomous Systems, 61(3), 283–296. doi:10.1016/j.robot.2012.11.010.
  21. Ferrari, C., & Canny, J. (1992). Planning optimal grasps. In IEEE International Conference on Robotics and Automation (pp. 2290–2295). doi:10.1109/ROBOT.1992.219918.
  22. Geidenstam, S., Huebner, K., Banksell, D., & Kragic, D. (2009). Learning of 2D grasping strategies from box-based 3D object approximations. In Proceedings of Robotics: Science and Systems, Seattle, USA.Google Scholar
  23. Goldfeder, C., & Allen, P. (2011). Data-driven grasping. Autonomous Robots, 31, 1–20. doi:10.1007/s10514-011-9228-1.CrossRefGoogle Scholar
  24. Goldfeder, C., Allen, P., Lackner, C., & Pelossof, R. (2007). Grasp planning via decomposition trees. In IEEE International Conference on Robotics and Automation 2007 (pp. 4679–4684). doi:10.1109/ROBOT.2007.364200.
  25. Goldfeder, C., Ciocarlie, M., Dang, H., & Allen, P. (2009a). The columbia grasp database. In IEEE International Conference on Robotics and Automation 2009, ICRA ’09 (pp. 1710–1716).Google Scholar
  26. Goldfeder, C., Ciocarlie, M., Peretzman, J., Dang, H., & Allen, P. (2009b). Data-driven grasping with partial sensor data. In IEEE/RSJ International Conference on Intelligent Robots and Systems 2009, IROS 2009 (pp. 1278–1283). doi:10.1109/IROS.2009.5354078.
  27. Harris, Z. (1970). Distributional structure. In Papers in Structural and Transformational Linguistics. Dordrecht: D. Reidel Publishing Company (pp. 775–794).Google Scholar
  28. Hebert, P., Hudson, N., Ma, J., Howard, T., Fuchs, T., Bajracharya, M., & Burdick, J. (2012). Combined shape, appearance and silhouette for simultaneous manipulator and object tracking. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp 2405–2412). doi:10.1109/ICRA.2012.6225084.
  29. Horowitz, M. B., & Burdick, J. W. (2012). Combined grasp and manipulation planning as a trajectory optimization problem. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp. 584–591). doi:10.1109/ICRA.2012.6225104.
  30. Hsiao, K., Chitta, S., Ciocarlie, M., & Jones, E. (2010). Contact-reactive grasping of objects with partial shape information. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1228–1235).Google Scholar
  31. Hsiao, K., Kaelbling, L., & Lozano-PÃI’rez, T. (2011). Robust grasping under object pose uncertainty. Autonomous Robots, 31, 253–268. doi:10.1007/s10514-011-9243-2.CrossRefGoogle Scholar
  32. Huebner, K., & Kragic, D. (2008). Selection of robot pre-grasps using box-based shape approximation. In IEEE/RSJ International Conference on Intelligent Robots and Systems 2008, IROS 2008 (pp. 1765–1770). doi:10.1109/IROS.2008.4650722.
  33. Jia, Y.B. (2000). Grasping curved objects through rolling. In Proceedings of IEEE International Conference on Robotics and Automation 2000, ICRA ’00 (Vol. 1, pp. 377–382). doi:10.1109/ROBOT.2000.844085.
  34. Jiang, L. T., & Smith, J. R. (2012). Seashell effect pretouch sensing for robotic grasping. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 2851–2858). doi:10.1109/ICRA.2012.6224985.
  35. Jiang, Y., Moseson, S., & Saxena, A. (2011). Efficient grasping from rgbd images: Learning using a new rectangle representation. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 3304–3311). doi:0.1109/ICRA.2011.5980145.
  36. Kazemi, M., Valois, J. S., Bagnell, J. A., & Pollard, N. (2012). Robust object grasping using force compliant motion primitives. In Proceedings of Robotics: Science and Systems, Sydney, Australia.Google Scholar
  37. Kim, J., Iwamoto, K., Kuffner, J. J., Ota, Y., & Pollard, N. S. (2012). Physically-based grasp quality evaluation under uncertainty. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 3258–3263). doi:10.1109/ICRA.2012.6225342.
  38. Klingbeil, E., Rao, D., Carpenter, B., Ganapathi, V., Ng, A.Y., & Khatib, O. (2011). Grasping with application to an autonomous checkout robot. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 2837–2844). doi:10.1109/ICRA.2011.5980287.
  39. Kootstra G, PopoviÄG M, JÃÿrgensen JA, Kuklinski K, Miatliuk K, Kragic D, & KrÃger N. (2012). Enabling grasping of unknown objects through a synergistic use of edge and surface information. The International Journal of Robotics Research, 31(10), 1190–1213. doi:10.1177/0278364912452621.Google Scholar
  40. Laaksonen, J., Nikandrova, E., & Kyrki, V. (2012). Probabilistic sensor-based grasping. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012 (pp. 2019–2026). doi:10.1109/IROS.2012.6385621.
  41. Le, Q., Kamm, D., Kara, A., & Ng, A. (2010). Learning to grasp objects with multiple contact points. In IEEE International Conference on Robotics and Automation (ICRA), 2010 (pp. 5062–5069). doi:10.1109/ROBOT.2010.5509508.
  42. Li, Z., & Sastry, S. (1988). Task-oriented optimal grasping by multifingered robot hands. IEEE Journal of Robotics and Automation, 4(1), 32–44. doi:10.1109/56.769.CrossRefGoogle Scholar
  43. López-Coronado, J., & Pedreño Molina, J. (2002). A neural model for visual-tactile-motor integration in robotic reaching and grasping tasks. Robotica, 20, 23–31.CrossRefGoogle Scholar
  44. Lourakis M (Jul. 2004). levmar: Levenberg-marquardt nonlinear least squares algorithms in C/C++. Retrieved Jan 31, 2005 from http://www.ics.forth.gr/lourakis/levmar/.
  45. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In L.M.L Cam, J. Neyman (Eds.). Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability Berkeley: University of California Press (Vol. 1, pp. 281–297).Google Scholar
  46. Miller, A., & Allen, P. (1999). Examples of 3d grasp quality computations. In Proceeding of IEEE International Conference on Robotics and Automation 1999 (Vol. 2, pp. 1240–1246).Google Scholar
  47. Miller, A., Knoop, S., Christensen, H., & Allen, P. (2003). Automatic grasp planning using shape primitives. In Proceedings of IEEE International Conference on Robotics and Automation 2003, ICRA ’03 (Vol. 2, pp. 1824–1829). doi:10.1109/ROBOT.2003.1241860.
  48. Miller, A. T., & Allen, P. K. (2004). Graspit! a versatile simulator for robotic grasping. IEEE Robotics & Automation Magazine, 11(4), 110–122.Google Scholar
  49. Mishra, T., & Mishra, B. (1994). Reactive algorithms for 2 and 3 finger grasping. In IEEE/RSJ International Workshop on Intelligent Robots and Systems.Google Scholar
  50. Morales, A., Prats, M., Sanz, P., & Pobil, A.P. (2007). An experiment in the use of manipulation primitives and tactile perception for reactive grasping. In Workshop on Robot Manipulation: Sensing and Adapting to the Real World, Robotics: Science and Systems (RSS 2007).Google Scholar
  51. Nikandrova E, Laaksonen J, & Kyrki V (2012). Explorative sensor-based grasp planning. In G. Herrmann, M. Studley, M. Pearson, A. Conn, C. Melhuish, M. Witkowski, J.H. Kim, P. Vadakkepat (Eds.), Lecture Notes in Computer Science, Advances in Autonomous Robotics (Vol. 7429, pp. 197–208), Berlin: Springer.Google Scholar
  52. Papazov, C., & Burschka, D. (2010). An efficient ransac for 3d object recognition in noisy and occluded scenes. In Asian Conference on Computer Vision (pp. 135–148).Google Scholar
  53. Petrovskaya, A., Khatib, O., Thrun, S., & Ng, A. (2006). Bayesian estimation for autonomous object manipulation based on tactile sensors. In Proceedings of IEEE International Conference on Robotics and Automation 2006, ICRA (2006) (pp. 707–714). doi:10.1109/ROBOT.2006.1641793.
  54. Pezzementi, Z., Jantho, E., Estrade, L., & Hager, G. (2010). Characterization and simulation of tactile sensors. In IEEE International Conference on Haptics Symposium 2010 (pp. 199–205). doi:10.1109/HAPTIC.2010.5444654.
  55. Pezzementi, Z., Reyda, C., & Hager, G. (2011). Object mapping, recognition, and localization from tactile geometry. In IEEE International Conference on Robotics and Automation (ICRA), 2011 (pp. 5942–5948). doi:10.1109/ICRA.2011.5980363.
  56. Platt, R. (2007). Learning grasp strategies composed of contact relative motions. In 7th IEEE-RAS International Conference on Humanoid Robots 2007 (pp. 49–56). doi:10.1109/ICHR.2007.4813848.
  57. Platt, R., Fagg, A., & Grupen, R. (2010). Null-space grasp control: Theory and experiments. IEEE Transactions on Robotics, 26(2), 282–295. doi:10.1109/TRO.2010.2042754.Google Scholar
  58. Platt, R., Permenter, F., & Pfeiffer, J. (2011). Using bayesian filtering to localize flexible materials during manipulation. IEEE Transactions on Robotics, 27(3), 586–598. doi:10.1109/TRO.2011.2139150.CrossRefGoogle Scholar
  59. Popovic, M., Kraft, D., Bodenhagen, L., Baseski, E., Pugeault, N., Kragic, D., et al. (2010). A strategy for grasping unknown objects based on co-planarity and colour information. Robotics and Autonomous Systems, 58(5), 551–565.CrossRefGoogle Scholar
  60. Przybylski, M., Asfour, T., & Dillmann, R. (2011). Planning grasps for robotic hands using a novel object representation based on the medial axis transform. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1781–1788).Google Scholar
  61. Rao, D., Le, Q., Phoka, T., Quigley, M., Sudsang, A., & Ng, A. (2010). Grasping novel objects with depth segmentation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2578–2585).Google Scholar
  62. Roa, M. A., Argus, M. J., Leidner, D., Borst, C., & Hirzinger, G. (2012). Power grasp planning for anthropomorphic robot hands. In IEEE International Conference on Robotics and Automation (ICRA), 2012 (pp. 563–569). doi:10.1109/ICRA.2012.6225068.
  63. Saxena, A., Driemeyer, J., Kearns, J., & Ng, A. Y. (2007). Robotic grasping of novel objects. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19 (pp. 1209–1216). Cambridge, MA: MIT Press.Google Scholar
  64. Saxena, A., Driemeyer, J., & Ng, A. Y. (2008). Robotic grasping of novel objects using vision. The International Journal of Robotics Research, 27(2), 157–173.CrossRefGoogle Scholar
  65. Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The princeton shape benchmark. In Shape Modeling International (pp. 167–178).Google Scholar
  66. Stulp, F., Theodorou, E., Buchli, J., & Schaal, S. (2011). Learning to grasp under uncertainty. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 5703–5708).Google Scholar
  67. Suárez, R., Roa, M., & Cornella, J. (2006). Grasp quality measures. Technical Report, Technical University of Catalonia. http://hdl.handle.net/2117/316. Accessed 20 July 2013.
  68. Suykens, J. A. K., Alzate, C., & Pelckmans, K. (2010). Primal and dual model representations in kernel-based learning. Statistics Surveys, 4, 148–183. doi:10.1214/09-ss052.CrossRefMATHMathSciNetGoogle Scholar
  69. Wang, D., Watson, B.T., & Fagg, A. (2007). A switching control approach to haptic exploration for quality grasps. In Proceedings of the Robotics: Science & Systems 2007 Workshop on Sensing and Adapting to the Real World.Google Scholar
  70. Weisz, J., & Allen, P.K. (2012). Pose error robust grasping from contact wrench space metrics. In IEEE International Conference on Robotics and Automation (ICRA), 2012. (pp. 557–562). doi:10.1109/ICRA.2012.6224697.
  71. Zhang, L., & Trinkle, J. C. (2012). The application of particle filtering to grasping acquisition with visual occlusion and tactile sensing. In IEEE International Conference on Robotics and Automation (ICRA) 2012 (pp. 3805–3812). doi:10.1109/ICRA.2012.6225125.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Computer Science DepartmentColumbia UniversityNew YorkUSA

Personalised recommendations