Advertisement

Autonomous Robots

, Volume 36, Issue 4, pp 295–308 | Cite as

A robust and fast method for 6DoF motion estimation from generalized 3D data

  • Diego Viejo
  • Miguel CazorlaEmail author
Article

Abstract

Nowadays, there is an increasing number of robotic applications that need to act in real three-dimensional (3D) scenarios. In this paper we present a new mobile robotics orientated 3D registration method that improves previous Iterative Closest Points based solutions both in speed and accuracy. As an initial step, we perform a low cost computational method to obtain descriptions for 3D scenes planar surfaces. Then, from these descriptions we apply a force system in order to compute accurately and efficiently a six degrees of freedom egomotion. We describe the basis of our approach and demonstrate its validity with several experiments using different kinds of 3D sensors and different 3D real environments.

Keywords

6DoF pose registration 3D mapping  Mobile robots Scene modeling 

Notes

Acknowledgments

This work has been supported by project DPI2009-07144 from Ministerio de Educación y Ciencia (Spain) and GRE10-35 from Universidad de Alicante (Spain).

References

  1. Agrawal, M. (2006). A lie algebraic approach for consistent pose registration for general euclidean motion. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1891–1897).Google Scholar
  2. Armesto, L., Minguez, J., & Montesano, L. (2010). A generalization of the metric-based iterative closest point technique for 3D scan matching. In IEEE international conference on robotics and automation, ICRA 2010, Alaska.Google Scholar
  3. Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.CrossRefGoogle Scholar
  4. Borrmann, D., & Nüchter, A. (2012). Thermo bremen data set. http://kos.informatik.uni-osnabrueck.de/3Dscans/
  5. Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A., & Hertzberg, J. (2008). Globally consistent 3D mapping with scan matching. Robotics and Autonomous Systems, 56(2), 130–142.CrossRefGoogle Scholar
  6. Brunnstrom, K., & Stoddart, A. (1996). Genetic algorithms for free-form surface matching. In: A. Stoddart (Ed.), Proceedings of the 13th international conference on pattern recognition, Vol. 4 (pp. 689–693).Google Scholar
  7. Censi, A. (2008). An ICP variant using a point-to-line metric. In Proceedings of the IEEE international conference on robotics and automation (ICRA 2008), Pasadena, CA.Google Scholar
  8. Chen, C. S., Hung, Y. P., & Cheng, J. B. (1999). RANSAC-based DARCES: A new approach to fast automatic registration of partially overlapping range images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11), 1229–1234.CrossRefGoogle Scholar
  9. Chen, Y., & Medioni, G. (1991). Object modeling by registration of multiple range images. In: G. Medioni (Ed.), Proceedings of the IEEE international conference on robotics and automation 1991, Vol. 3 (pp. 2724–2729).Google Scholar
  10. Chung, D., Yun, I., & Lee, S. (1998). Registration of multiple range views using the reverse calibration technique. Pattern Recognition, 31, 457–464.CrossRefGoogle Scholar
  11. Dalley, G., & Flynn, P. (2002). Pair-wise range image registration: A study in outlier classification. Computer Vision and Image Understanding, 87(1–3), 104–115.Google Scholar
  12. Dorai, C., Wang, G., Jain, A., & Mercer, C. (1998). Registration and integration of multiple object views for 3d model construction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1), 83–89.CrossRefGoogle Scholar
  13. Du, S., Zheng, N., Ying, S., & Wei, J. (2007a). ICP with bounded scale for registration of m-d point sets. In Proceedings of the IEEE international conference on multimedia and expo, 2007 (pp. 1291–1294)Google Scholar
  14. Du, S., Zheng, N., Ying, S., You, Q., & Wu, Y. (2007b). An extension of the icp algorithm considering scale factor. In Proceedings of the IEEE international conference on image processing, ICIP 2007, Vol. 5 (pp. V-193–V-196).Google Scholar
  15. Fan, J., Zeng, M., Body, M., & Hacid, M. S. (2005). Seeded region growing: An extensive and comparative study. Pattern Recognition Letters, 26, 1139–1156.CrossRefGoogle Scholar
  16. Godin, G., Rioux, M., & Baribeau, R. (1994). Three-dimensional registration using range and intensity information. In S. F. El-Hakim (Ed.), Proceedings of SPIE, Videometrics III, Vol. 2350 (pp. 279–290). Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) ConferenceGoogle Scholar
  17. Goecke, R., Asthana, A., Pettersson, N., & Petersson, L. (2007). Visual vehicle egomotion estimation using the fourier-mellin transform. In Proceedings of the IEEE intelligent vehicles symposium (pp. 450–455).Google Scholar
  18. Johnson, A., & Hebert, M. (1997). Surface registration by matching oriented points. In M. Hebert (Ed.), Proceedings of international conference on recent advances in 3-D digital imaging and modeling, 1997 (pp. 121–128).Google Scholar
  19. Kanatani, K. (1993). Geometric computation for machine vision. Oxford: Oxford University Press, Inc.zbMATHGoogle Scholar
  20. Katz, R., Nieto, J., & Nebot, E. (2010). Unsupervised classification of dynamic obstacles in urban environments. Journal of Field Robotics, 27, 450–472.CrossRefGoogle Scholar
  21. Kim, S., Jho, C., & Hong, H. (2003). Automatic registration of 3D data sets from unknown viewpoints. In Workshop on frontiers of computer vision Google Scholar
  22. Koch, O., & Teller, S. (2007). Wide-area egomotion estimation from known 3D structure. In Proceedings of the IEEE conference on computer vision and pattern recognition CVPR ’07 (pp. 1–8)Google Scholar
  23. Kümmerle, R., Triebel, R., Pfaff, P., & Burgard, W. (2008). Monte carlo localization in outdoor terrains using multilevel surface maps. Journal of Field Robotics, 25(6–7), 346–359.Google Scholar
  24. Martin Nevado, M., Gomez Garcia-Bermejo, J., & Zalama Casanova, E. (2004). Obtaining 3D models of indoor environments with a mobile robot by estimating local surface directions. Robotics and Autonomous Systems, 48(2–3), 131–143.Google Scholar
  25. Masuda, T., Sakaue, K., & Yokoya, N. (1996). Registration and integration of multiple range images for 3-D model construction. In Proceedings of the 1996 international conference on pattern recognition (ICPR ’96). IEEE Computer Society, Vol. 1–7270 (p. 879).Google Scholar
  26. Munyoz-Salinas, R., Aguirre, E., García-Silvente, M., & Gonzalez, A. (2008). A multiple object tracking approach that combines colour and depth information using a confidence measure. Pattern Recognition Letters, 29(10), 1504–1514.CrossRefGoogle Scholar
  27. Nüchter, A., Hertzberg, J., Lingemann, K., & Surmann, H. (2007). 6D SLAM—3D mapping outdoor environments. Journal of Field Robotics, 24(8–9), 699–722.Google Scholar
  28. Nuchter, A., Lingemann, K., & Hertzberg, J. (2007). Cached k-d tree search for icp algorithms. In Proceedings of the sixth international conference on 3-D digital imaging and modeling 3DIM ’07 (pp. 419–426)Google Scholar
  29. Pulli, K. (1999). Multiview registration for large data sets. In Proceedings of the second international conference on 3-D digital imaging and modeling (pp. 160–168)Google Scholar
  30. Pulli, K. A. (1997). Surface reconstruction and display from range and color data. PhD thesis, University of Washington. Google Scholar
  31. Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Proceedings of the third international conference on 3-D digital imaging and modeling (pp. 145–152)Google Scholar
  32. Salvi, J., Matabosch, C., Fofi, D., & Forest, J. (2007). A review of recent range image registration methods with accuracy evaluation. Image and Vision Computing, 25(5), 578–596.CrossRefGoogle Scholar
  33. Segal, A., Haehnel, D., & Thrun, S. (2009). Generalized-icp. In Proceedings of robotics: Science and systems, Seattle.Google Scholar
  34. Shih, F. Y., & Cheng, S. (2005). Automatic seeded region growing for color image segmentation. Image and Vision Computing, 23, 877–886.CrossRefGoogle Scholar
  35. Trucco, S., & Verri, A. (1998). Introductory techiques in computer vision. Upper Saddle River: Prentice-Hall.Google Scholar
  36. Turk, G., & Levoy, M. (1994). Zippered polygon meshes from range images. In Proceedings of the 21st annual conference on computer graphics and interactive techniques, ACM (pp. 311–318)Google Scholar
  37. Viejo, D., & Cazorla, M. (2007). 3D plane-based egomotion for slam on semi-structured environment. In IEEE/RSJ international conference on intelligent robots and systems, IROS 2007 (pp. 2761–2766). doi: 10.1109/IROS.2007.4399138.
  38. Viejo, D., Cazorla, M. (2008). 3D model based map building. In International symposium on robotics, ISR 2008, Seul.Google Scholar
  39. Viejo, D., & Cazorla, M. (2013). Rovit data set. http://www.rovit.ua.es/dataset/
  40. Weik, S. (1997). Registration of 3-D partial surface models using luminance and depth information. In Proceedings of the international conference on recent advances in 3-D digital imaging and modeling (pp. 93–100)Google Scholar
  41. Weingarten, J., & Siegwart, R. (2005). EKF-based 3D SLAM for structured environment reconstruction. In R. Siegwart (Ed.), IEEE/RSJ international conference on intelligent robots and systems, 2005 (IROS 2005) (pp. 3834–3839)Google Scholar
  42. Weingarten, J., Gruener, G., Siegwart, R. (2004). Probabilistic plane fitting in 3D and an application to robotic mapping. In Proceedings of the IEEE international conference on robotics and automation ICRA ’04, Vol. 1 (pp. 927–932)Google Scholar
  43. Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 13(2), 119–152.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Ciencia de la Computación e Inteligencia ArtificialUniversity of AlicanteAlicanteSpain

Personalised recommendations