Autonomous Robots

, Volume 36, Issue 3, pp 241–256 | Cite as

Anytime merging of appearance-based maps

Article

Abstract

We consider the problem of merging together multiple appearance-based maps independently built by a team of robots jointly exploring an indoor environment. Due to the lack of accepted metrics to evaluate the quality of merged appearance-based maps, we propose to use algebraic connectivity for this purpose, and we discuss why this is an appropriate measure. Next, we introduce QuickConnect, an anytime algorithm aiming to maximize the given metric and we show how it can merge couple of maps, as well as multiple maps at the same time. The proposed algorithm has been implemented and tested on a fully functioning robotic system building appearance-based maps using a bag of words approach. QuickConnect outperforms alternative methods and features a convenient tradeoff between accuracy and speed.

Keywords

Map merging Appearance-based maps Multi-robot systems 

Notes

Acknowledgments

A shorter version of this paper appeared at ICRA 2012 (Erinc and Carpin 2012).

References

  1. Angeli, A., Doncieux, S., Meyer, J.-A., & Filliat, D. (2008). Real-time visual loop-closure detection. In Proceedings of the IEEE international conference on robotics and automation (pp. 1842–1847).Google Scholar
  2. Angeli, A., Doncieux, S., Meyer, J.-A., & Filliat, D. (2009). Visual topological slam and global localization. In Proceedings of the IEEE international conference on robotics and automation (pp. 4300–4305).Google Scholar
  3. Angeli, A., Filliat, D., Doncieux, S., & Meyer, J.-A. (2008). Fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, 24(5), 1027–1037.CrossRefGoogle Scholar
  4. Aragüés, R., Cortés, J., & Sagüés, C. (2011). Distributed consensus algorithms for merging feature-based maps with limited communication. Robotics and Autonomous Systems, 59(3–4), 163–180.CrossRefGoogle Scholar
  5. Aragüés, R., Cortés, J., & Sagüés, C. (2012). Distributed consensus on robot networks for dynamically merging feature-based maps. IEEE Transactions on Robotics, 28(4), 840–854.CrossRefGoogle Scholar
  6. Birk, A., & Carpin, S. (2006). Merging occupancy grids from multiple robots. Proceedings of the IEEE, 94(7), 1384–1397.CrossRefGoogle Scholar
  7. Booij, O., Terwijn, B., Zivkovic, Z., & Krose, B. (2007). Navigation using an appearance based topological map. In Proceedings of the IEEE international conference on robotics and automation (pp. 3927–3932).Google Scholar
  8. Carpin, S. (2008a). Fast and accurate map merging for multi-robot systems. Autonomous Robots, 25(3), 305–316.CrossRefGoogle Scholar
  9. Carpin, S. (2008b). Merging maps via Hough transform. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1878–1883).Google Scholar
  10. Cummins, M., & Newman, P. (2005). Highly scalable appearance-only slam fab-map 2.0. In Robotics science and systems.Google Scholar
  11. Danesi, A., Fontanelli, D., & Bicchi, A. (2006). Visual servoing on image maps. In Proceedings of the IEEE international symposium on experimental, robotics (pp. 277–286).Google Scholar
  12. Dedeoglu, G., & Sukhatme, G. S. (2000). Landmark-based matching algorithm for cooperative mapping by autonomous robots. In Distributed autonomous robotic systems (Vol. 4, pp. 251–260). Tokyo: Springer.Google Scholar
  13. Erinc, G., & Carpin, S. (2009). Image-based mapping and navigation with heterogeneous robots. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 5807–5814).Google Scholar
  14. Erinc, G., & Carpin, S. (2010). Evaluation criteria for appearance-based maps. In Proceedings of performance metrics for intelligent systems.Google Scholar
  15. Erinc, G., & Carpin, S. (2012). Anytime merging of appearance based maps. In Proceedings of the IEEE international conference on robotics and automation (pp. 1656–1662).Google Scholar
  16. Ferreira, F., Dias, J., & Santos, V. (2008). Merging topological maps for localisation in large environments. In Proceedings of the international conference on climbing and walking robots and the support technologies for mobile machines.Google Scholar
  17. Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98), 298–305.Google Scholar
  18. Filliat, D. (2008). Interactive learning of visual topological navigation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 248–254).Google Scholar
  19. Fraundorfer, F., Engels, C., & Nister, D. (2007). Topological mapping, localization and navigation using image collections. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3872–3877).Google Scholar
  20. Hajjdiab, H., & Laganiere, R. (2004). Vision-based multi-robot simultaneous localization and mapping. In Proceedings of Canadian conference on computer and robot vision (pp. 155–162).Google Scholar
  21. Hedau, V., Hoiem, D., & Forsyth, D. (2009). Recovering the spatial layout of cluttered rooms. In Proceedings of the IEEE international conference on computer vision (pp. 1849–1856).Google Scholar
  22. Ho, K. L., & Newman, P. (2005). Multiple map intersection detection using visual appearance. In International conference on computational intelligence, robotics and autonomous systems.Google Scholar
  23. Huang, W. H., & Beevers, K. R. (2005). Topological map merging. International Journal of Robotics Research, 24(8), 601–613.CrossRefGoogle Scholar
  24. Kang, H., Efros, A. A., Hebert, M., & Kanade, T. (2009). Image matching in large scale indoor environment. In IEEE computer society conference on computer vision and pattern recognition workshop on egocentric vision.Google Scholar
  25. Kirkland, S. (2010). Algebraic connectivity for vertex-deleted subgraphs, and a notion of vertex centrality. Discrete Mathematics, 310(4), 911–921.CrossRefMATHMathSciNetGoogle Scholar
  26. Konolige, K., Fox, D., Limketkai, B., Ko, J., & Steward B. (2003). Map merging for distributed robot navigation. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 212–217).Google Scholar
  27. Kosnar, K., Krajnik, T., & Preucil, L. (2008). Visual topological mapping. In Proceedings of European robotics symposium (Vol. 44, pp. 333–342).Google Scholar
  28. Lee, H.-C., & Lee, B.-H. (2011). Improved feature map merging using virtual supporting lines for multi-robot systems. Advanced Robotics, 25(13–14), 1675–1696.CrossRefGoogle Scholar
  29. Lin, Z., Kim, S., & I. Kweon, S. (2005). Recognition-based indoor topological navigation using robust invariant features. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 2309–2314).Google Scholar
  30. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRefGoogle Scholar
  31. Luo, J., Pronobis, A., Caputo, B., & Jensfelt, P. (2006). The KTH-IDOL2 database. Technical report. KTH Royal Institute of Technology, CVAP/CAS.Google Scholar
  32. Ma, Y., Soatto, S., Kosecka, J., & Sastry, S. S. (2003). An invitation to 3-D vision: From images to geometric models. Berlin: Springer.Google Scholar
  33. Madhavan, R., Scrapper, C., & Kleiner, A. (2009). Special issue on “characterizing mobile robot localization and mapping”. Autonomous Robots, 27, 309–481.Google Scholar
  34. Maohai, L., Bingrong, H., & Ronghua, L. (2006). Novel method for monocular vision based mobile robot localization. In Proceedings of international conference on computational intelligence and security (Vol. 2, pp. 949–954).Google Scholar
  35. Mariottini, G. L., Oriolo, G., & Prattichizzo, D. (2007). Image-based visual servoing for nonholonomic mobile robots using epipolar geometry. IEEE Transactions on Robotics, 23(1), 87– 100.CrossRefGoogle Scholar
  36. Mosk-Aoyama, D. (2008). Maximum algebraic connectivity augmentation is np-hard. Operations Research Letters, 36(6), 677–679.CrossRefMATHMathSciNetGoogle Scholar
  37. Muja, M., & Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. In International conference on computer vision theory and applications (pp. 331–340).Google Scholar
  38. Nicosevici, T., & Garca, R. (2009). On-line visual vocabularies for robot navigation and mapping. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 205–212).Google Scholar
  39. Nister, D., & Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In IEEE conference on computer vision and pattern recognition (pp. 2161–2168).Google Scholar
  40. Özkucur, N., & Akin, H. L. (2010). Cooperative multi-robot map merging using fast-SLAM. In J. Baltes et al. (Eds.), Robocup 2009: Robot Soccer World Cup XIII (pp. 449–460). Berlin: Springer.Google Scholar
  41. Philbin, J., & Zisserman, A. (2008). Object mining using a matching graph on very large image collections. In Proceedings of Indian conference on computer vision, graphics & image processing (pp. 738–745).Google Scholar
  42. Pronobis, A., & Caputo, B. (2005). The KTH-INDECS database. Technical report. KTH Royal Institute of Technology, CVAP/CAS.Google Scholar
  43. Quattoni, A., & Torralba, A. (2009). Recognizing indoor scenes. In IEEE conference on computer vision and pattern recognition (pp. 413–420).Google Scholar
  44. Rybski, P. E., Roumeliotis, S. J., Gini, M., & Papanikolopoulos, N. (2008). Appearance-based mapping using minimalistic sensor models. Autonomous Robots, 24, 229–246.CrossRefGoogle Scholar
  45. Saeedi Gharahbolagh, S., Paull, L., Trentini, M., Seto, M., & Li, H. (2012a). Efficient map merging using a probabilistic generalized voronoi diagram. In Proceedings of the IEEE/RJS international conference on intelligent robots and systems (pp. 4419–4424).Google Scholar
  46. Saeedi Gharahbolagh, S., Paull, L., Trentini, M., Seto, M., & Li, H. (2012b). Map merging using Hough peak matching. In Proceedings of the IEEE/RSJ international conference on intelliegent robots and systems (pp. 4683–4688).Google Scholar
  47. Santos-Victor, J., Vassallo, R., & Schneebeli, H. (1999). Topological maps for visual navigation. In Proceedings of international conference on computer vision systems (pp. 21–36).Google Scholar
  48. Se, S., Lowe, D., & Little, J. (2001a). Local and global localization for mobile robots using visual landmarks. In Proceedings of the IEEE international conference on intelligent robots and systems (Vol. 1, pp. 414–420).Google Scholar
  49. Se, S., Lowe, D., & Little, J. (2001b). Vision-based mobile robot localization and mapping using scale-invariant features. In Proceedings of the IEEE international conference on robotics and automation (Vol. 2, pp. 2051–2058).Google Scholar
  50. Se, S., Lowe, D., & Little, J. (2002). Mobile robot localization and mapping with uncertainty using scale-invariantvisual landmarks. International Journal of Robotics Research, 21(8), 735–758.CrossRefGoogle Scholar
  51. Sivic, J., & Zisserman, A. (2003). Video google: A text retrieval approach to object matching in videos. In Proceedings of the international conference on computer vision (Vol. 2, pp. 1470–1477).Google Scholar
  52. Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of Molecular Biology, 147(1), 195–197.CrossRefGoogle Scholar
  53. Tran, T. T. H., & Marchand, E. (2007). Real-time keypoints matching: Application to visual servoing. In Proceedings of the IEEE international conference on robotics and automation (pp. 3787–3792).Google Scholar
  54. Valgren, C., Lilienthal, A., & Duckett, T. (2006). Incremental topological mapping using omnidirectional vision. In Proceedings of the IEEE international conference on intelligent robots and systems (pp. 3441–3447).Google Scholar
  55. Zhou, X. S., & Roumeliotis, S. I. (2006). Multi-robot SLAM with unknown initial correspondence: The robot rendezvous case. In Proceedings of the IEEE/RSJ international conference on intelliegent robots and systems (pp. 1785–1792).Google Scholar
  56. Zivkovic, Z., Bakker, B., & Krose, B. (2005). Hierarchical map building using visual landmarks and geometric constraints. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 2480–2485).Google Scholar
  57. Zivkovic, Z., Bakker, B., & Krose, B. (2006). Hierarchical map building and planning based on graph partitioning. In Proceedings of the IEEE international conference on robotics and automation (pp. 803–809).Google Scholar
  58. Zivkovic, Z., Booij, O., & Krose, B. (2007). From images to rooms. Robotics and Autonomous Systems, 55(5), 411–418.CrossRefGoogle Scholar
  59. Zivkovic, Z., Booij, O., Krose, B., Topp, E. A., & Christensen, H. I. (2008). From sensors to human spatial concepts: An annotated data set. IEEE Transactions on Robotics, 24(2), 501–505.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of EngineeringUniversity of California, MercedMercedUSA

Personalised recommendations