Autonomous Robots

, Volume 35, Issue 2–3, pp 221–237

Multi-observation sensor resetting localization with ambiguous landmarks

Article

Abstract

Successful approaches to the robot localization problem include particle filters, which estimate non-parametric localization belief distributions. Particle filters are successful at tracking a robot’s pose, although they fare poorly at determining the robot’s global pose. The global localization problem has been addressed for robots that sense unambiguous visual landmarks with sensor resetting, by performing sensor-based resampling when the robot is lost. Unfortunately, for robots that make sparse, ambiguous and noisy observations, standard sensor resetting places new pose hypotheses across a wide region, in poses that may be inconsistent with previous observations. We introduce multi-observation sensor resetting (MOSR) to address the localization problem with sparse, ambiguous and noisy observations. MOSR merges observations from multiple frames to generate new hypotheses more effectively. We demonstrate experimentally on the NAO humanoid robots that MOSR converges more efficiently to the robot’s true pose than standard sensor resetting, and is more robust to systematic vision errors.

References

  1. Adams, M., Zhang, S., & Xie, L. (2004). Particle filter based outdoor robot localization using natural features extracted from laser scanners. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (Vol. 2, pp. 1493–1498).Google Scholar
  2. Andreasson, H., Treptow, A., & Duckett, T. (2005). Localization for mobile robots using panoramic vision, local features and particle filter. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3348–3353).Google Scholar
  3. Biswas, J., Coltin, B., & Veloso, M. (2011). Corrective gradient refinement for mobile robot localization. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (pp. 73–78).Google Scholar
  4. Biswas, J., & Veloso, M. (2010). Wifi localization and navigation for autonomous indoor mobile robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 4379–4384).Google Scholar
  5. Biswas, J., & Veloso, M. (2012). Depth camera based indoor mobile robot localization and navigation. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1697–1702).Google Scholar
  6. Bruce, J., Balch, T., & Veloso, M. (2000). Fast and inexpensive color image segmentation for interactive robots. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (Vol. 3, pp. 2061–2066).Google Scholar
  7. Burchardt, A., Laue, T., & Röfer, T. (2011). Optimizing particle filter parameters for self-localization. In RoboCup 2010: Robot Soccer World Cup XIV (pp 145–156). Heidelberg: Springer.Google Scholar
  8. Burgard, W., Fox, D., Hennig, D., & Schmidt, T. (1996). Estimating the absolute position of a mobile robot using position probability grids. In Proceedings of the national conference on artificial intelligence (AAAI) (pp. 896–901).Google Scholar
  9. Buschka, P., Saffiotti, A., & Wasik, Z. (2000). Fuzzy landmark-based localization for a legged robot. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (Vol. 2, pp. 1205–1210).Google Scholar
  10. Choo, K., & Fleet, D. (2001). People tracking using hybrid Monte Carlo filtering. In Proceedings of the IEEE international conference on computer vision (ICCV) (Vol. 2, pp. 321–328).Google Scholar
  11. Coltin, B., Liemhetcharat, S., Meriçli, C., Tay, J., & Veloso, M. (2010). Multi-humanoid world modeling in standard platform robot soccer. In Proceedings of the IEEE international conference on humanoid robots (Humanoids) (pp. 424–429).Google Scholar
  12. Coltin, B., & Veloso, M. (2011). Multi-observation sensor resetting localization with ambiguous landmarks. In Proceedings of the AAAI conference on artificial intelligence (AAAI) (pp. 62–1467).Google Scholar
  13. Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo localization for mobile robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA). (Vol. 2, pp. 1322–1328).Google Scholar
  14. Duane, S., Kennedy, A., Pendleton, B., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195(2), 216–222.CrossRefGoogle Scholar
  15. Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer, 22(6), 46–57.CrossRefGoogle Scholar
  16. Elinas, P., & Little, J. (2005) \(\sigma \)MCL: Monte–Carlo localization for mobile robots with stereo vision. In Proceedings of the robotics: Science and systems conference (RSS) (pp 373–380).Google Scholar
  17. Engelson, S., & McDermott, D. (1992). Error correction in mobile robot map learning. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 2555–2560).Google Scholar
  18. Erickson, L., Knuth, J., O’Kane, J., & LaValle, S. (2008). Probabilistic localization with a blind robot. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 1821–1827).Google Scholar
  19. Fischler, M., & Bolles, R. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRefGoogle Scholar
  20. Fox, D. (2001). KLD-sampling: Adaptive particle filters and mobile robot localization. Advances in Neural Information Processing Systems (NIPS), 14(1), 26–32.Google Scholar
  21. Fox, D., Burgard, W., & Thrun, S. (1998). Active Markov localization for mobile robots. Robotics and Autonomous Systems, 25(3), 195–207.CrossRefGoogle Scholar
  22. Gordon, N., Salmond, D., & Smith, A. (1993). Novel approach to nonlinear/non-Gaussian bayesian state estimation. In IET Proceedings from radar and signal processing (Vol. 140, pp. 107–113).Google Scholar
  23. Gutmann, J. S., & Fox, D. (2002). An experimental comparison of localization methods continued. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (Vol. 1, pp. 454–459).Google Scholar
  24. Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109.MATHCrossRefGoogle Scholar
  25. Hester, T., & Stone, P. (2008). Negative information and line observations for Monte Carlo localization. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 2764–2769).Google Scholar
  26. Hoffman, J., Spranger, M., Gohring, D., & Jungel, M. (2005). Making use of what you don’t see: Negative information in Markov localization. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (Vol. 1, pp. 2947–2952).Google Scholar
  27. Iocchi, L., Matsubara, H., Weitzenfeld, A., & Zhou, C. (2009). RoboCup 2008: Robot Soccer World Cup XII (Vol. 5399). Heidelberg: Springer.CrossRefGoogle Scholar
  28. Jensfelt, P., & Kristensen, S. (2001). Active global localization for a mobile robot using multiple hypothesis tracking. Transactions on Robotics and Automation, 17(5), 748–760.CrossRefGoogle Scholar
  29. Jochmann, G., Kerner, S., Tasse, S., & Urbann, O. (2012). Efficient multi-hypotheses unscented Kalman filtering for robust localization. In RoboCup 2011: Robot Soccer World Cup XV (pp. 222–233). Heidelberg: Springer.Google Scholar
  30. Kalman, R. E., et al. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45.CrossRefGoogle Scholar
  31. Kantor, G., & Singh, S. (2002). Preliminary results in range-only localization and mapping. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (Vol. 2, pp. 1818–1823).Google Scholar
  32. Kaplan, K., Celik, B., Meriçli, T., Meriçli, C., & Akın, H. (2006). Practical extensions to vision-based Monte Carlo localization methods for robot soccer domain. In RoboCup 2005: Robot Soccer World Cup IX (pp. 624–631). Heidelberg: Springer.Google Scholar
  33. Kümmerle, R., Triebel, R., Pfaff, P., & Burgard, W. (2008). Monte carlo localization in outdoor terrains using multilevel surface maps. Journal of Field Robotics, 25(6–7), 346–359.MATHCrossRefGoogle Scholar
  34. Lenser, S., Bruce, J., & Veloso, M. (2001). Cmpack: A complete software system for autonomous legged soccer robots. In Proceedings of the international conference on autonomous agents (pp. 204–211). New York: ACM.Google Scholar
  35. Lenser, S., & Veloso, M. (2000). Sensor resetting localization for poorly modelled mobile robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (Vol. 2, pp. 1225–1232).Google Scholar
  36. Leonard, J., & Durrant-Whyte, H. (1991). Mobile robot localization by tracking geometric beacons. Transactions on Robotics and Automation, 7(3), 376–382.CrossRefGoogle Scholar
  37. Levinson, J., Montemerlo, M., & Thrun, S. (2007). Map-based precision vehicle localization in urban environments. In Proceedings of the robotics science and systems conference (RSS).Google Scholar
  38. Liemhetcharat, S., Coltin, B., & Veloso, M. (2010). Vision-based cognition of a humanoid robot in standard platform robot soccer. Humanoids. In Proceedings of the workshop on Humanoid Soccer.Google Scholar
  39. Marchetti, L., Grisetti, G., & Iocchi, L. (2007). A comparative analysis of particle filter based localization methods. In RoboCup 2006: Robot Soccer World Cup X (pp. 442–449). Heidelberg: Springer.Google Scholar
  40. Martín, F., Matellán, V., Barrera, P., & Cañas, J. (2007). Localization of legged robots combining a fuzzy-Markov method and a population of extended Kalman filters. Robotics and Autonomous Systems, 55(12), 870–880.CrossRefGoogle Scholar
  41. Menegatti, E., Zoccarato, M., Pagello, E., & Ishiguro, H. (2004). Image-based monte carlo localisation with omnidirectional images. Robotics and Autonomous Systems, 48(1), 17–30.CrossRefGoogle Scholar
  42. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21, 1087.CrossRefGoogle Scholar
  43. Milstein, A., Sánchez, J., & Williamson, E. (2002). Robust global localization using clustered particle filtering. In Proceedings of the national conference on artificial intelligence (AAAI) (pp. 581–586).Google Scholar
  44. Neira, J., & Tardós, J. D. (2001). Data association in stochastic mapping using the joint compatibility test. Transactions on Robotics and Automation, 17(6), 890–897.CrossRefGoogle Scholar
  45. Odakura, V., Sacchi, R., Ramisa, A., Bianchi, R., & Costa, A. (2009). The use of negative detection in cooperative localization in a team of four-legged robots. Sao Paulo: Anais do Simpósio Brasileiro de Automação Inteligente.Google Scholar
  46. Özkucur, N., & Akn, H. (2011). Localization with non-unique landmark observations. In RoboCup 2010: Robot Soccer World Cup X (pp. 72–81). Heidelberg: Springer.Google Scholar
  47. Pfaff, P., Burgard, W., & Fox, D. (2006). Robust Monte-Carlo localization using adaptive likelihood models. In European robotics symposium 2006 (pp. 181–194). Berlin: Springer.Google Scholar
  48. Pitt, M., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599.MathSciNetMATHCrossRefGoogle Scholar
  49. Porta, J., Verbeek, J., & Kröse, B. (2005). Active appearance-based robot localization using stereo vision. Autonomous Robots, 18(1), 59–80.CrossRefGoogle Scholar
  50. Quinlan, M., Middleton, R. (2010). Multiple model Kalman filters: A localization technique for RoboCup soccer. In RoboCup 2009: Robot Soccer World Cup X (pp. 276–287). Heidelberg: Springer.Google Scholar
  51. Ratter, A., Hengst, B., Hall, B., White, B., Vance, B., Sammut, C., Claridge, D., Nguyen, H., Ashar, J., Pagnucco, M., Robinson, S., & Zhu, Y. (2010). rUNSwift Team Report 2010. Australia: University of New South Wales.Google Scholar
  52. Rekleitis, I. (2004). A particle filter tutorial for mobile robot localization. Technical Report TR-CIM-04-02. Centre for Intelligent Machines, McGill University, Montreal.Google Scholar
  53. Röfer, T., & Jungel, M. (2003). Vision-based fast and reactive Monte-Carlo localization. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (Vol. 1, pp. 856–861).Google Scholar
  54. Roth, M., Vail, D., & Veloso, M. (2003). A real-time world model for multi-robot teams with high-latency communication. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (Vol. 3, pp. 2494–2499).Google Scholar
  55. Rybski, P., & Veloso, M. (2009). Prioritized multihypothesis tracking by a robot with limited sensing. EURASIP Journal on Advances in Signal Processing, 2009, 138–154.CrossRefGoogle Scholar
  56. Schulz, H., Liu, W., Stückler, J., & Behnke, S. (2011). Utilizing the structure of field lines for efficient soccer robot localization. In RoboCup 2010: Robot Soccer World Cup X (pp. 397–408). Heidelberg: Springer.Google Scholar
  57. Seekircher, A., Laue, T., & Röfer, T. (2011). Entropy-based active vision for a humanoid soccer robot. In RoboCup 2010: Robot Soccer World Cup X (pp. 1–12). Heidelberg: Springer..Google Scholar
  58. Sridharan, M., Kuhlmann, G., & Stone, P. (2005). Practical vision-based Monte Carlo localization on a legged robot. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 3366–3371).Google Scholar
  59. Vail, D., & Veloso, M. (2003). Dynamic multi-robot coordination. In Multi-robot systems: From swarms to intelligent automata (Vol. II, pp. 87–100). Dordrecht: Kluwer.Google Scholar
  60. Vlassis, N., Terwijn, B., & Krose, B. (2002). Auxiliary particle filter robot localization from high-dimensional sensor observations. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (Vol. 1, pp. 7–12).Google Scholar
  61. Whelan, T., Stdli, S., McDonald, J., & Middleton, R. (2011). Efficient localization for robot soccer using pattern matching. In Proceedings of the international ISoLA workshop on software aspects of robotic systems.Google Scholar
  62. Winner, E., & Veloso, M. (2000). Multi-fidelity robotic behaviors: Acting with variable state information. In Proceedings of the national conference on artificial intelligence (AAAI) (pp. 872–878).Google Scholar
  63. Wolf, J., Burgard, W., & Burkhardt, H. (2005). Robust vision-based localization by combining an image-retrieval system with monte carlo localization. Transactions on Robotics, 21(2), 208–216.CrossRefGoogle Scholar
  64. Zickler, S., Laue, T., Birbach, O., Wongphati, M., & Veloso, M. (2010). SSL-Vision: The shared vision system for the RoboCup small size league. In RoboCup 2009: Robot Soccer World Cup X (pp. 425–436). Heidelberg: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations