Advertisement

Autonomous Robots

, Volume 35, Issue 2–3, pp 195–219 | Cite as

Unifying microscopic flocking motion models for virtual, robotic, and biological flock members

  • Benjamin T. Fine
  • Dylan A. Shell
Article

Abstract

Flocking motions have been the subject of hundreds of studies over the past six decades. The vast majority of models have nearly identical aims: bottom-up demonstration of basic emergent flocking motions. Despite a significant fraction of the literature providing algorithmic descriptions of models, incompleteness and imprecision are also readily identifiable in flocking algorithms, algorithmic input, and validation of the models. To address this issue, this meta-study introduces a data-flow template, which unifies many of the existing approaches. Additionally, there are small differences and ambiguities in the flocking scenarios being studied by different researchers; unfortunately, these differences are of considerable significance. For example, much subtlety is needed to specify sensory requirements exactly and minor modifications may critically alter a flock’s exhibited motions. We introduce two taxonomies that minimize both incompleteness and imprecision, and enable us to highlight those publications that study flocking motions under comparable assumptions. Furthermore, we aggregate and translate the publications into a consolidated notation. The common notation along with the data-flow template and the two taxonomies constitute a collection of tools, that together, facilitates complete and precise flocking motion models, and enables much of the work to be unified. To conclude, we make recommendations for more diverse research directions and propose criteria for rigorous problem definitions and descriptions of future flocking motion models.

Keywords

Flocking Multi-agent systems Multi-agent robotics Biology-inspired swarms 

References

  1. Albi, G., & Pareschi, L. (2012). Modeling self-organized systems interacting with few individuals: from microscopic to macroscopic dynamics. ArXiv e-prints.Google Scholar
  2. Aoki, I. (1984). Internal dynamics of fish schools in relation to inter-fish distance. Bulletin of the Japanese Society of Scientific Fisheries, 48(3), 1081–1088.Google Scholar
  3. Arkin, R. C., & Balch, T. (1999). Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation, 14(6), 926–939.Google Scholar
  4. Babak, P., Magnsson, K. G., & Sigurdsson, S. (2004). Dynamics of group formation in collective motion of organisms. Mathematical Medicine and Biology, 21(4), 269–292.zbMATHCrossRefGoogle Scholar
  5. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., et al. (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences, 105(4), 1232–1237.Google Scholar
  6. Barbosa, A. (1995). Foraging strategies and their influence on scanning and flocking behaviour of waders. Journal of Avian Biology, 26(3), 182–186.MathSciNetCrossRefGoogle Scholar
  7. Bazazi, S., Buhl, J., Hale, J. J., Anstey, M. L., Sword, G. A., Simpson, S. J., et al. (2008). Collective motion and cannibalism in locust migratory bands. Current Biology, 18(10), 735–739.Google Scholar
  8. Bender, J. G., & Fenton, R. E. (1970). On the flow capacity of automated highways. Transportation Science, 4(1), 52–63.CrossRefGoogle Scholar
  9. Blomqvist, O., Bremberg, S., & Zauer, R. (2012). Mathematical modeling of flocking behavior. Doctoral dissertation, KTH.Google Scholar
  10. Bode, N. W. F., Franks, D. W., & Wood, A. J. (2011). Limited interactions in flocks: Relating model simulations to empirical data. Journal of The Royal Society Interface, 8(55), 301–304.CrossRefGoogle Scholar
  11. Camperi, M., Cavagna, A., Giardina, I., Parisi, G., & Silvestri, E. (2012). Spatially balanced topological interaction grants optimal cohesion in flocking models. Interface Focus, 2(6), 715–725.CrossRefGoogle Scholar
  12. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., et al. (2010). From empirical data to inter-individual interactions: Unveiling the rules of collective animal behavior. Mathematical Models and Methods in Applied Sciences, 20, 1491–1510.Google Scholar
  13. Cavagna, A., Giardina, I., & Ginelli, F. (2012). Boundary information inflow enhances correlation in flocking. ArXiv e-prints.Google Scholar
  14. Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4), 445–453.CrossRefGoogle Scholar
  15. Codling, E. A., Pitchford, J. W., & Simpson, S. D. (2007). Group navigation and the “many-wrongs principle” in models of animal movement. Ecology, 88(7), 1864–1870.CrossRefGoogle Scholar
  16. Conradt, L., Krause, J., Couzin, I. D., & Roper, T. J. (2009). “Leading According to Need” in self-organizing groups. The American Naturalist, 173(3), 304–312.CrossRefGoogle Scholar
  17. Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision making in animal groups on the move. Nature, 433(3), 513–516.CrossRefGoogle Scholar
  18. Şamiloglu, A. T., Gazi, V., & Koku, A. B. (2006). Effects of asynchronism and neighborhood size on clustering in self-propelled particle systems. In Computer and Information Sciences ISCIS 2006, Lecture Notes in Computer Science (Vol. 4263, pp. 665–676). Berlin: Springer.Google Scholar
  19. Czirók, A., Stanley, H. E., & Vicsek, T. (1997). Spontaneously ordered motion of self-propelled particles. Journal of Physics A: Mathematical and General, 30(5), 1375–1385.CrossRefGoogle Scholar
  20. Dingle, H., & Drake, A. V. (2007). What is migration? BioScience, 57(2), 113–121.CrossRefGoogle Scholar
  21. Dong, J. G. (2012). Flocking under hierarchical leadership with a free-will leader. International Journal of Robust and Nonlinear Control, n/a–n/a.Google Scholar
  22. Edelstein-Keshet, L. (2001). Mathematical models of swarming and social aggregation. In International Symposium on Nonlinear Theory and its Applications, Miyagi, Japan.Google Scholar
  23. Emlen, J. T, Jr. (1952). Flocking behavior in birds. The Auk, 69(2), 160–170.CrossRefGoogle Scholar
  24. Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C., & Dorigo, M. (2012). Self-organized flocking with a mobile robot swarm: A novel motion control method. Adaptive Behavior, 20(6), 460–477.CrossRefGoogle Scholar
  25. Fine, B. T., & Shell, D. A. (2011). Flocking: don’t need no stink’n robot recoginition. In IEEE/RSJ International Conference on Robotics and Automation, San Francisco, CA, USA.Google Scholar
  26. Fine, B. T., & Shell, D. A. (2012). Examining the information requirements for flocking motion. In 12th International Conference on Adaptive Behavior, Odense, Denmark.Google Scholar
  27. Gazi, V., & Passino, K. M. (2003). Stability analysis of swarms. IEEE Transactions on Automatic Control, 48(4), 692–697.MathSciNetCrossRefGoogle Scholar
  28. Gazi, V., & Passino, K. M. (2005). Stability of a one-dimensional discrete-time asynchronous swarm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 35(4), 834–841.CrossRefGoogle Scholar
  29. Giardina, I. (2008). Collective behavior in animal groups: Theoretical models and empirical studies. HFSP Journal, 2(4), 205–219.CrossRefGoogle Scholar
  30. Ginelli, F., & Chaté, H. (2010). Relevance of metric-free interactions in flocking phenomena. Physical Review Letters, 105(168), 103.Google Scholar
  31. Gökçe, F. & Şahin, E. (2009). To flock or not to flock: the pros and cons of flocking in long-range “migration” of mobile robot swarms. In Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’09), Budapest, Hungary (pp 65–72).Google Scholar
  32. Goldstone, R. L., & Janssen, M. A. (2005). Computational models of collective behavior. Trends in Cognitive Sciences, 9(9), 424– 430.CrossRefGoogle Scholar
  33. Grégoire, G., Chaté, H., & Tuj, Y. (2003). Moving and staying together without a leader. Physica D: Nonlinear Phenomena, 181(30–4), 157–170.MathSciNetzbMATHCrossRefGoogle Scholar
  34. Gueron, S., Levin, S. A., & Rubenstein, D. I. (1996). The dynamics of herds: From individuals to aggregations. Journal of Theoretical Biology, 182(1), 85–98.CrossRefGoogle Scholar
  35. Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31(2), 295–311.CrossRefGoogle Scholar
  36. Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J. C., & Floreano, D. (2011). Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate. In IEEE/RSJ International Conference on Robotics and Automation, San Francisco, CA, USA.Google Scholar
  37. Helbing, D., & Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51, 4282–4286.CrossRefGoogle Scholar
  38. Helbing, D., Farkas, I., & Vicsek, T. (2000). Simulating dynamical features of escape panic. Nature, 407, 487–490.CrossRefGoogle Scholar
  39. Helbing, D., Buzna, L., Johansson, A., & Werner, T. (2005). Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 39(1), 1–24.CrossRefGoogle Scholar
  40. Hildenbrandt, H., Carere, C., & Hemelrijk, C. (2010). Self-organized aerial displays of thousands of starlings: A model. Behavioral Ecology, 21(6), 1349–1359.CrossRefGoogle Scholar
  41. Huth, A., & Wissel, C. (1992). The simulation of the movement of fish schools. Journal of Theoretical Biology, 156(3), 365–385.CrossRefGoogle Scholar
  42. Hutto, R. L. (1988). Foraging behavior patterns suggest a possible cost associated with participation in mixed-species bird flocks. Oikos, 51(1), 79–83.CrossRefGoogle Scholar
  43. Ip, G. W., Chiu, Cy, & Wan, C. (2006). Birds of a feather and birds flocking together: hysical versus behavioral cues may lead to trait- versus goal-based group perception. Journal of personality and social psychology, 90(3), 368–381.CrossRefGoogle Scholar
  44. Jadbabaie, A., Lin, J., & Morse, A. S. (2002). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 988–1001.MathSciNetCrossRefGoogle Scholar
  45. James, R., Bennett, P. G., & Krause, J. (2004). Geometry for mutualistic and selfish herds: The limited domain of danger. Journal of Theoretical Biology, 228(1), 107–113.CrossRefGoogle Scholar
  46. Kelly, I. D., & Keating, D. A. (1996). On flocking by the fusion of sonar and active infrared sensors. In Proceedings of the Conference on Mechatronics and Machine Vision in Practice. Guimarães, Portugal (Vol. 1, pp. 14–17).Google Scholar
  47. Kline, C. (1996). C++ boids. Retrieved March 2012 from http://www.behaviorworks.com/people/ckline/cornellwww/boid/boids.html.
  48. Levine, H., Rappel, W. J., & Cohen, I. (2000). Self-organization in systems of self-propelled particles. Physical Review E, 63(1), 017101–017104.CrossRefGoogle Scholar
  49. Lindhé, M., Ögren, P., & Johansson, K., H. (2005). Flocking with Obstacle Avoidance: A New Distributed Coordination Algorithm Based on Voronoi Partitions. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’05), Barcelona, Spain (pp 1785–1790).Google Scholar
  50. Lopez, U., Gautrais, J., Couzin, I. D., & Theraulaz, G. (2012). From behavioural analyses to models of collective motion in fish schools. Interface Focus, 2(6), 693–707.CrossRefGoogle Scholar
  51. Lukeman, R., Li, Y. X., & Edelstein-Keshet, L. (2010). Inferring individual rules from collective behavior. Proceedings of the National Academy of Sciences USA, 107(28), 12576–12580.CrossRefGoogle Scholar
  52. Matarić, M. J. (1993). Designing Emergent Behaviors: From Local Interactions to Collective Intelligence. In Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB ’93), Honolulu, Hawai, USA (pp. 432–441).Google Scholar
  53. Mikhailov, A. S., & Zanette, D. H. (1999). Noise-induced breakdown of coherent collective motion in swarms. Physical Review E, 60(4), 4571–4575.CrossRefGoogle Scholar
  54. Miki, T., & Nakamura, T. (2006). An effective simple shepherding algorithm suitable for implementation to a multi-mmobile robot system. In First International Conference on Innovative Computing, Information and Control, 2006. ICICIC ’06 (Vol. 3, pp. 161–165).Google Scholar
  55. Mogilner, A., & Edelstein-Keshet, L. (1999). A non-local model for a swarm. Journal of Mathematical Biology, 38, 534–570.MathSciNetzbMATHCrossRefGoogle Scholar
  56. Moussaïd, M., Helbing, D., Simon Garnier, M. C., Johansson, A., & Theraulaz, G. (2009). Experimental study of the Behavioural mechanisms underlying self-organization in human crowds. Proceedings of the Royal Society B, 276, 2755–2762.CrossRefGoogle Scholar
  57. Niizato, T., & Gunji, Y. P. (2011). Metrictopological interaction model of collective behavior. Ecological Modelling, 222(17), 3041–3049.CrossRefGoogle Scholar
  58. Okubo, A. (1986). Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Advances in Biophysics, 22, 1–94.CrossRefGoogle Scholar
  59. Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420.MathSciNetCrossRefGoogle Scholar
  60. Parrish, J. K. (1989). Re-examining the selfish herd: Are central fish safer? Animal Behaviour, 38(6), 1048–1053.CrossRefGoogle Scholar
  61. Parrish, J. K., & Edelstein-Keshet, L. (1999). Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science, 284(5411), 99–101.CrossRefGoogle Scholar
  62. Parrish, J. K., Viscido, S. V., & Grunbaum, D. (2002). Self-organized fish schools: An examination of emergent properties. Biological Bulletin, 202(3), 296–305.CrossRefGoogle Scholar
  63. Partridge, B. L. (1982). The structure and function of fish schools. Scientific American, 246(6), 114–123.CrossRefGoogle Scholar
  64. Pitcher, T. J., Partridge, B. L., & Wardle, C. S. (1976). A blind fish can school. Science, 194(4268), 963–965.CrossRefGoogle Scholar
  65. Rands, S. A., Pettifor, R. A., Rowcliffe, J. M., & Cowlishaw, G. (2004). State-dependent foraging rules for social animals in selfish herds. Proceedings of the Royal Society of London Series B: Biological Sciences, 271(1557), 2613–2620.CrossRefGoogle Scholar
  66. Rauch, E. M., Millonas, M. M., & Chialvo, D. R. (1995). Pattern formation and functionality in swarm models. Physics Letters A, 207(3–4), 185–193.MathSciNetzbMATHCrossRefGoogle Scholar
  67. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Computer Graphics, 21(4), 25–34.CrossRefGoogle Scholar
  68. Reynolds, C. W. (2004). Opensteer: Steering behaviors for autonomous characters. http://opensteer.sourceforge.net/, Last viewed in March 2012.
  69. Shimoyama, N., Sugawara, K., Mizuguchi, T., Hayakawa, Y., & Sano, M. (1996). Collective motion in a system of motile elements. Physical Review Letters, 76(20), 3870–3873.CrossRefGoogle Scholar
  70. Simons, A. M. (2004). Many wrongs: The advantage of group navigation. Trends in Ecology & Evolution, 19(9), 453–455.CrossRefGoogle Scholar
  71. Smith, J., & Martin, A. (2009). Comparison of hard-core and soft-core potentials for modelling flocking in free space. ArXiv e-prints.Google Scholar
  72. Sugawara, K. (2012). Personal communications.Google Scholar
  73. Szabó, P., Nagy, M., & Vicsek, T. (2008). Turning with the others: novel transitions in an SPP model with coupling of accelerations. In Proceedings of the IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO ’08), Venice, Italy (pp 463–464).Google Scholar
  74. Szabó, P., Nagy, M., & Vicsek, T. (2009). Transitions in a self-propelled-particles model with coupling of accelerations. Physical Review E, 79(2), 021908–021913.CrossRefGoogle Scholar
  75. Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003a). Stable flocking of mobile agents, part I: Fixed topology. In Proceedings of the IEEE Conference on Decision and Control (pp. 2010–2015).Google Scholar
  76. Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2003b). Stable flocking of mobile agents, part II: Dynamic topology. In Proceedings of the IEEE Conference on Decision and Control (pp. 2016–2021).Google Scholar
  77. Toner, J., & Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58(4), 4828–4858.MathSciNetCrossRefGoogle Scholar
  78. Turgut, A., Çelikkanat, H., Gökçe, F., & Şahin, E. (2008). Self-organized flocking in mobile robot swarms. Swarm Intelligence, 2(2–4), 97–120.CrossRefGoogle Scholar
  79. Vaughan, R., Sumpter, N., Henderson, J., Frost, A., & Cameron, S. (2000). Experiments in automatic flock control. Robotics and Autonomous Systems, 31, 109–117.CrossRefGoogle Scholar
  80. Vicsek, T., & Zafeiris, A. (2012). Collective motion. Physics Reports, 517(3–4), 71–140.CrossRefGoogle Scholar
  81. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75(6), 1226–1229.CrossRefGoogle Scholar
  82. Vine, I. (1971). Risk of visual detection and pursuit by a predator and the selective advantage of flocking behaviour. Journal of Theoretical Biology, 30(2), 405–422.CrossRefGoogle Scholar
  83. Viscido, S. V., & Wethey, D. S. (2002). Quantitative analysis of fiddler crab flock movement: Evidence for ‘selfish herd’ behaviour. Animal Behaviour, 63(4), 735–741.CrossRefGoogle Scholar
  84. Viscido, S. V., Miller, M., & Wethey, D. S. (2002). The dilemma of the selfish herd: The search for a realistic movement rule. Journal of Theoretical Biology, 217(2), 183–194.MathSciNetCrossRefGoogle Scholar
  85. Warburton, K., & Lazarus, J. (1991). Tendency-distance models of social cohesion in animal groups. Journal of Theoretical Biology, 150(4), 473–488.CrossRefGoogle Scholar
  86. Whitfield, D. P. (2003). Redshank Tringa totanus flocking behaviour, distance from cover and vulnerability to sparrowhawk Accipiter nisus predation. Journal of Avian Biology, 34(7), 163– 169.CrossRefGoogle Scholar
  87. Wood, A. J., & Ackland, G. J. (2007). Evolving the selfish herd: Emergence of distinct aggregating strategies in an individual-based model. Proceedings of the Royal Society of London Series B: Biological Sciences, 274(1618), 1637–1642.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations