Autonomous Robots

, Volume 35, Issue 2–3, pp 93–109 | Cite as

Optimal spatial formation of swarm robotic gas sensors in odor plume finding

Article

Abstract

Finding the best spatial formation of stationary gas sensors in detection of odor clues is the first step of searching for olfactory targets in a given space using a swarm of robots. Considering no movement for a network of gas sensors, this paper formulates the problem of odor plume detection and analytically finds the optimal spatial configuration of the sensors for plume detection, given a set of assumptions. This solution was analyzed and verified by simulations and finally experimentally validated in a reduced scale realistic environment using a set of Roomba-based mobile robots.

Keywords

Odor plume finding Olfactory search  Swarm robotics formation Gas sensor coverage 

References

  1. Arshak, K., Moore, E., Lyons, G., Harris, J., & Clifford, S. (2004). A review of gas sensors employed in electronic nose applications. Sensor Review, 24(2), 181–198.CrossRefGoogle Scholar
  2. Balkovsky, E., & Shraiman, B. (2002). Olfactory search at high Reynolds number. Proceedings of National Academy of Science, 99(20), 12589–12593.Google Scholar
  3. Briggs, G. (1973). Diffusion estimation for small emissions ATDL, contribution file No. 97. Oak Ridge, TN: Air Resources Atmospheric Turbulence and Diffusion Laboratory, NOAA.CrossRefGoogle Scholar
  4. Cheng, K., Acevedo-Bolton, V., Jiang, R., Klepeis, N., Ott, W., Fringer, O., & Hildemann, L. (2011). Modeling exposure close to air pollution sources in naturally ventilated residences: Association of turbulent diffusion coefficient with air change rate. Environmental science & technology, 45, 4016–4022.Google Scholar
  5. Crimaldi, J., Wiley, M., & Koseff, J. (2002). The relationship between mean and instantaneous structure in turbulent passive scalar plumes. Journal of Turbulence, 3(14), 1–24.MathSciNetGoogle Scholar
  6. Cui, X., Hardin, C., Ragade, R., & Elmaghraby, A. (2004). A swarm approach for emission sources localization. In IEEE International Conference on Tools with Artificial Intelligence, FL, USA.Google Scholar
  7. Dunbabin, M., & Marques, L. (2012). Robotics for environmental monitoring: Significant advancements and applications. IEEE Robotics and Automation Magazine, 19(1), 24–39.Google Scholar
  8. Ferri, G., Caselli, E., Mattoli, V., Mondini, A., Mazzolai, B., & Dario, P. (2009). SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow. Robotics and Autonomous Systems, 57(4), 393–402.CrossRefGoogle Scholar
  9. Fu, H.-L., Chen, H.-C., & Lin, P. (2012). APS: Distributed air pollution sensing system on wireless sensor and robot networks. Computer Communications, 35(9), 1141–1150.CrossRefGoogle Scholar
  10. Gazi, V., & Passino, K. (2004). Stability analysis of social foraging swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 34(1), 539–557.CrossRefGoogle Scholar
  11. Gifford, F. (1960). Peak to average concentration ratios according to a fluctuating plume dispersion model. International Journal of Air Pollution, 3, 253.Google Scholar
  12. Grasso, F., Dale, J., Consi, T., Mountain, D., & Atema, J. (1997). Effectiveness of continuous bilateral sampling for robot chemotaxis in a turbulent odor plume: Implications for lobster chemo-orientation. The Biological Bulletin, 193(2), 215–216.Google Scholar
  13. Hayes, A., Martinoli, A., & Goodman, R. (2003). Swarm robotic odor localization: Off-line optimization and validation with real robots. Robotica, 21(04), 427–441.CrossRefGoogle Scholar
  14. Hernandez Bennetts, V., Lilienthal, A., Neumann, P., & Trincavelli, M. (2012). Mobile robots for localizing gas emission sources on landfill sites: Is bio-inspiration the way to go? Frontiers in Neuroengineering, 4, 20.CrossRefGoogle Scholar
  15. Ishida, H., Tanaka, H., Taniguchi, H., & Moriizumi, T. (2006). Mobile robot navigation using vision and olfaction to search for a gas/odor source. Autonomous Robots, 20(3), 231–238.CrossRefGoogle Scholar
  16. Jones, C. (1983). On the structure of instantaneous plumes in the atmosphere. Journal of Hazardous Materials, 7(2), 87–112.Google Scholar
  17. Kazadi, S. (2003). Extension of plume tracking behavior to robot swarms. In Proceedings of the IIIS/SCI Conference on Systems, Cybernetics, and Informatics, Orlando, USA.Google Scholar
  18. Khatib, O. (1986). Real time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–99. Google Scholar
  19. Kowadlo, G., Rawlinson, D., Russell, R., & Jarvis, R. (2006). Bi-modal search using complementary sensing (olfaction/vision) for odour source localisation. In Proceedings of IEEE International Conference on Robotics and Automation, Orlando, USA.Google Scholar
  20. Krishnanand, K., & Ghose, D. (2008). Theoretical foundations for rendezvous of glowworm-inspired agent swarms at multiple locations. Robotics and Autonomous Systems, 56(7), 549–569.CrossRefGoogle Scholar
  21. Legg, S., Benavides-Serrano, A., Siirola, J., Watson, J., Davis, S., Bratteteig, A., & Laird, C. (2012). A stochastic programming approach for gas detector placement using cfd-based dispersion simulations. Computers & Chemical Engineering, 47, 194–201.Google Scholar
  22. Li, F., Meng, Q., Bai, S., Li, J., & Popescu, D. (2008). Probability-PSO algorithm for multi-robot based odor source localization in ventilated indoor environments. Intelligent Robotics and Applications, 5314, 1206–1215.Google Scholar
  23. Li, W., Farrell, J., & Cardé, R. (2001). Tracking of fluid-advected odor plumes: Strategies inspired by insect orientation to pheromone. Adaptive Behavior, 9(3–4), 143.CrossRefGoogle Scholar
  24. Lilienthal, A., & Duckett, T. (2004). Building gas concentration gridmaps with a mobile robot. Robotics and Autonomous Systems, 48(1), 3–16.CrossRefGoogle Scholar
  25. Lochmatter, T., Aydin, E., Navarro, I., & Martinoli, A. (2010). A plume tracking algorithm based on crosswind formations. In Proceedings of International Symposium on Distributed Autonomous Robotics Systems. Lausanne, Switzerland.Google Scholar
  26. Lochmatter, T. & Martinoli, A. (2009). Tracking odor plumes in a laminar wind field with bio-inspired algorithms. In Experimental robotics. Berlin, Heidelberg: Springer.Google Scholar
  27. Loutfi, A., Coradeschi, S., Lilienthal, A., & Gonzalez, J. (2008). Gas distribution mapping of multiple odour sources using a mobile robot. Robotica, 27(02), 311–319.CrossRefGoogle Scholar
  28. Lytridis, C., Kadar, E., & Virk, G. (2006). A systematic approach to the problem of odour source localisation. Autonomous Robots, 20(3), 261–276.CrossRefGoogle Scholar
  29. Marjovi, A., & Marques, L. (2011). Multi-robot olfactory search in structured environments. Robotics and Autonomous Systems, 52(11), 867–881.Google Scholar
  30. Marjovi, A., & Marques, L. (2012). Multi-robot topological exploration using olfactory cues. Springer Tracts in Advanced Robotics Distributed Autonomous Robotic Systems, 83, 47–60.Google Scholar
  31. Marjovi, A., Nunes, J., Marques, L., & de Almeida, A. (2010a). Multi-robot fire searching in unknown environment. Springer Tracts in Advanced Robotics Field and Service Robotics, 62, 341–351.CrossRefGoogle Scholar
  32. Marjovi, A., Nunes, J., Sousa, P., Faria, R., & Marques, L. (2010b). An olfactory-based robot swarm navigation method. In Proceedings of IEEE International Conference on Robotics and Automation, Alaska, USA.Google Scholar
  33. Marjovi, A., Nunes, J.G., Marques, L., & de Almeida, A.T.(2009). Multi-robot exploration and fire searching. In IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA.Google Scholar
  34. Marques, L., & de Almeida, A. (2006). ThermalSkin: A distributed sensor for anemotaxis robot navigation. In Proceedings of 5th IEEE International Conference on Sensors, South Korea.Google Scholar
  35. Marques, L., Nunes, U., & Almeida, A. (2002). Olfaction-based mobile robot navigation. Thin Solid Films, 418(1), 51–58.CrossRefGoogle Scholar
  36. Marques, L., Nunes, U., & de Almeida, A. (2006). Particle swarm-based olfactory guided search. Autonomous Robots, 20(3), 277–287.CrossRefGoogle Scholar
  37. Martinez, D., Rochel, O., & Hugues, E. (2006). A biomimetic robot for tracking specific odors in turbulent plumes. Autonomous Robots, 20(3), 185–195.CrossRefGoogle Scholar
  38. Meng, Q., Yang, W., Wang, Y., & Zeng, M. (2011). Collective odor source estimation and search in time-variant airflow environments using mobile robots. Sensors, 11(11), 10415–10443.CrossRefGoogle Scholar
  39. Miyata, E., & Mori, S. (2011). Optimization of gas detector locations by application of atmospheric dispersion modeling tools. Sumitomo Kagaku, I, 1–10.Google Scholar
  40. Pasternak, Z., Bartumeus, F., & Grasso, F. (2009). Lévy-taxis: A novel search strategy for finding odor plumes in turbulent flow-dominated environments. Journal of Physics A: Mathematical and Theoretical, 42, 434010.CrossRefGoogle Scholar
  41. Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. (2002). Direction set (Powell’s) methods in multidimensions. Numerical Recipes in C++: The Art of Scientific, Computing, 1992, 417–424.Google Scholar
  42. Pyk, P., Bermúdez i Badia, S., Bernardet, U., Knüsel, P., Carlsson, M., Gu, J., et al. (2006). An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Autonomous Robots, 20(3), 197–213.CrossRefGoogle Scholar
  43. Roberts, P., & Webster, D. (2002). Turbulent diffusion. Reston, VA: ASCE Press.Google Scholar
  44. Russell, R., Bab-Hadiashar, A., Shepherd, R., & Wallace, G. (2003). A comparison of reactive robot chemotaxis algorithms. Robotics and Autonomous Systems, 45(2), 83–97.CrossRefGoogle Scholar
  45. Russell, R., Thiel, D., Deveza, R., & Mackay-Sim, A. (1995). A robotic system to locate hazardous chemical leaks. In Proceedings of IEEE International Conference on Robotics and Automation, Nagoya, Japan.Google Scholar
  46. Sutton, O. (1947). The problem of diffusion in the lower atmosphere. Quarterly Journal of the Royal Meteorological Society, 73(317–318), 257–281.CrossRefGoogle Scholar
  47. Vergassola, M., Villermaux, E., & Shraiman, B. (2007). ‘Infotaxis’ as a strategy for searching without gradients. Nature, 445(7126), 406–409.CrossRefGoogle Scholar
  48. Wang, H., Zhang, M., Wang, J., & Huang, M. (2010). Engineering an emergency search and rescue application with wireless sensor network and mobile robot. International Conference on Measuring Technology and Mechatronics Automation, 2, 112–115.Google Scholar
  49. Zarzhitsky, D., Spears, D., & Spears, W. (2005). Swarms for chemical plume tracing. In Proceedings of the IEEE Swarm Intelligence Symposium, CA, USA.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Systems and RoboticsUniversity of CoimbraCoimbraPortugal

Personalised recommendations