Autonomous Robots

, Volume 34, Issue 3, pp 189–206 | Cite as

OctoMap: an efficient probabilistic 3D mapping framework based on octrees

  • Armin Hornung
  • Kai M. Wurm
  • Maren Bennewitz
  • Cyrill Stachniss
  • Wolfram Burgard
Article

Abstract

Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly represents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The results demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.

Keywords

3D Probabilistic Mapping Navigation 

References

  1. Amanatides, J., & Woo, A. (1987). A fast voxel traversal algorithm for ray tracing. In Proceedings of Eurographics, Amsterdam, The Netherlands.Google Scholar
  2. Blodow, N., Goron, L., Marton, Z., Pangercic, D., Ruhr, T., Tenorth, M., & Beetz, M. (2011). Autonomous semantic mapping for robots performing everyday manipulation tasks in kitchen environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: IEEE Press.Google Scholar
  3. Botsch, M., Wiratanaya, A., & Kobbelt, L. (2002). Efficient high quality rendering of point sampled geometry. In EGRW ’02 Proceedings of the 13th Eurographics workshop on Rendering, Aire-la-Ville, Switzerland, pp. 53–64.Google Scholar
  4. Ciocarlie, M., Hsiao, K., Jones, E. G., Chitta, S., Rusu, R. B., & Sucan, I. A. (2010). Towards reliable grasping and manipulation in household environments. In International Symposium on Experimental Robotics (ISER), Delhi.Google Scholar
  5. Cole, D., & Newman, P. (2006). Using laser range data for 3D SLAM in outdoor environments. In Proceedings of International Conference on Robotics & Automation (ICRA), Orlando.Google Scholar
  6. Dornhege, C., & Kleiner, A. (2011). A frontier-void-based approach for autonomous exploration in 3D. In IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Rio de Janeiro. New York: IEEE Press.Google Scholar
  7. Douillard, B., Underwood, J., Melkumyan, N., Singh, S., Vasudevan, S., & Brunner, C., et al. (2010). Hybrid elevation maps: 3D surface models for segmentation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei. New York: IEEE Press.Google Scholar
  8. Dryanovski, I., Morris, W., & Xiao, J. (2010). Multi-volume occupancy grids: An efficient probabilistic 3D mapping model for micro aerial vehicles. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice. New York: IEEE Press.Google Scholar
  9. Einhorn, E., Schröter, C., & Groß, H. M. (2011). Attention-driven monocular scene reconstruction for obstacle detection, robot navigation and map building. Robotics & Autonomous Systems, 59(5), 296–309.CrossRefGoogle Scholar
  10. Elseberg, J., Borrmann, D., & Nüchter, A. (2011). Efficient processing of large 3d point clouds. In Proceedings of the XXIII International Symposium on Information, Communication and Automation Technologies (ICAT’11), Sarajevo.Google Scholar
  11. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., & Burgard, W. (2012). An evaluation of the RGB-D SLAM system. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Guangzhou. New York: IEEE Press.Google Scholar
  12. Fairfield, N., Kantor, G., & Wettergreen, D. (2007). Real-time SLAM with octree evidence grids for exploration in underwater tunnels. Journal of Field Robotics, 24, 3–21.CrossRefGoogle Scholar
  13. Fournier, J., Ricard, B., & Laurendeau, D. (2007). Mapping and exploration of complex environments using persistent 3D model. In Fourth Canadian Conference on Computer and Robot Vision, Montreal, pp. 403–410.Google Scholar
  14. Girardeau-Montaut, D., Roux, M., Marc, R., & Thibault, G. (2005). Change detection on points cloud data acquired with a ground laser scanner. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36, 30–35.Google Scholar
  15. Gutmann, J. S., Fukuchi, M., & Fujita, M. (2008). 3D perception and environment map generation for humanoid robot navigation. International Journal of Robotics Research, 27(10), 1117–1134.Google Scholar
  16. Habbecke, M., & Kobbelt, L. (2007). A surface-growing approach to multi-view stereo reconstruction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence. New York: IEEE Press.Google Scholar
  17. Hadsell, R., Bagnell, J. A., & Hebert, M. (2009). Accurate rough terrain estimation with space-carving kernels. In Proceedings of Robotics: Science and Systems (RSS), Zaragoza.Google Scholar
  18. Hebert, M., Caillas, C., Krotkov, E., Kweon, I. S., & Kanade, T. (1989). Terrain mapping for a roving planetary explorer. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Scottsdale. New York: IEEE Press.Google Scholar
  19. Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., & Pollefeys, M. (2011). Autonomous obstacle avoidance and maneuvering on a vision-guided MAV using on-board processing. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Shanghai. New York: IEEE Press.Google Scholar
  20. Hertzberg, C., Wagner, R., Birbach, O., Hammer, T., & Frese, U. (2011). Experiences in building a visual slam system from open source components. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Shanghai. New York: IEEE Press.Google Scholar
  21. Hoppe, H., DeRose, T., Duchamp, T., Mcdonald, J., & Stuetzle, W. (1992). Surface reconstruction from unorganized points. SIGGRAPH Computer Graphics, 26(2), 71–78.CrossRefGoogle Scholar
  22. Hornung, A., Wurm, K. M., & Bennewitz, M. (2010). Humanoid robot localization in complex indoor environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Anchorage. New York: IEEE Press.Google Scholar
  23. Hornung, A., Phillips, M., Jones, E. G., Bennewitz, M., Likhachev, M., & Chitta, S. (2012). Navigation in three-dimensional cluttered environments for mobile manipulation. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Minneapolis. New York: IEEE Press.Google Scholar
  24. Kammerl, J., Blodow, N., Rusu, R. B., Gedikli, S., Beetz, M., & Steinbach, E. G. (2012). Real-time compression of point cloud streams. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Minneapolis. New York: IEEE Press.Google Scholar
  25. Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D. M., Diaz-Calderon, A., et al. (2006). Toward reliable off road autonomous vehicles operating in challenging environments. Journal of Robotics Research, 25(5–6), 449–483.Google Scholar
  26. Kraetzschmar, G., Gassull, G., & Uhl, K. (2004). Probabilistic quadtrees for variable-resolution mapping of large environments. In M. I. Ribeiro & S. J. Victor (Eds.), Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal.Google Scholar
  27. Krainin, M., Henry, P., Ren, X., & Fox, D. (2011). Manipulator and object tracking for in-hand 3d object modeling. Journal of Robotics Research, 30(11), 1311–1327.CrossRefGoogle Scholar
  28. Laine, S., & Karras, T. (2010). Efficient sparse voxel octrees. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Washington, DC.Google Scholar
  29. Magnusson, M., Duckett, T., & Lilienthal, A. J. (2007). Scan registration for autonomous mining vehicles using 3D-NDT. Journal of Field Robotics, 24(10), 803–827.CrossRefGoogle Scholar
  30. Maier, D., Hornung, A., & Bennewitz, M. (2012). Real-time navigation in 3d environments based on depth camera data. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots (Humanoids), Osaka. New York: IEEE Press.Google Scholar
  31. Mason, J., Ricco, S., & Parr, R. (2011). Textured occupancy grids for monocular localization without features. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Shanghai. New York: IEEE Press.Google Scholar
  32. Meagher, D. (1982). Geometric modeling using octree encoding. Computer Graphics and Image Processing, 19(2), 129–147.CrossRefGoogle Scholar
  33. Moravec, H. (1996). Robot spatial perception by stereoscopic vision and 3D evidence grids. Technical report CMU-RI-TR-96-34. Pittsburgh: Robotics Institute.Google Scholar
  34. Moravec, H., & Elfes, A. (1985). High resolution maps from wide angle sonar. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA) (pp. 116–121), St. Louis. New York: IEEE Press.Google Scholar
  35. Müller, J., Kohler, N., & Burgard, W. (2011). Autonomous miniature blimp navigation with online motion planning and re-planning. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice. New York: IEEE Press.Google Scholar
  36. Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., & Davison, A., et al. (2011). KinectFusion: Real-time dense surface mapping and tracking. In 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 127–136). New York: IEEE Press.Google Scholar
  37. Nüchter, A., Lingemann, K., Hertzberg, J., & Surmann, H. (2007). 6D SLAM-3D mapping outdoor environments: Research articles. Journal of Field Robotics, 24(8–9), 699–722.MATHCrossRefGoogle Scholar
  38. Oßwald, S., Hornung, A., & Bennewitz, M. (2012). Improved proposals for highly accurate localization using range and vision data. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura. New York: IEEE Press.Google Scholar
  39. Pathak, K., Birk, A., Poppinga, J., & Schwertfeger, S. (2007). 3D forward sensor modeling and application to occupancy grid based sensor fusion. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego. New York: IEEE Press.Google Scholar
  40. Payeur, P., Hebert, P., Laurendeau, D., & Gosselin, C. (1997). Probabilistic octree modeling of a 3-d dynamic environment. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Albuquerque. New York: IEEE Press. Google Scholar
  41. Pfaff, P., Triebel, R., Stachniss, C., Lamon, P., Burgard, W., & Siegwart, R. (2007). Towards mapping of cities. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), Rome, Italy. New York: IEEE Press.Google Scholar
  42. Roth-Tabak, Y., & Jain, R. (1989). Building an environment model using depth information. Computer, 22(6), 85–90.CrossRefGoogle Scholar
  43. Ryde, J., & Hu, H. (2010). 3D mapping with multi-resolution occupied voxel lists. Autonomous Robots, 28(2), 169–185.CrossRefGoogle Scholar
  44. Schnabel, R., & Klein, R. (2006). Octree-based point-cloud compression. In Symposium on Point-Based Graphics 2006, Boston.Google Scholar
  45. Shade, R., & Newman, P. (2011). Choosing where to go: Complete 3D exploration with stereo. In Proceedings of the IEEE International Conference on Robotics & Automation (ICRA), New Orleans. New York: IEEE Press.Google Scholar
  46. Sibley, G., Mei, C., Reid, I., & Newman, P. (2009). Adaptive relative bundle adjustment. In Proceedings of Robotics Science and Systems (RSS), Seattle.Google Scholar
  47. Smith, M., Baldwin, I., Churchill, W., Paul, R., & Newman, P. (2009). The new college vision and laser data set. International Journal for Robotics Research (IJRR), 28(5):595–599. http://dx.doi.org/10.1177/0278364909103911.Google Scholar
  48. Stoyanov, T., Magnusson, M., Andreasson, H., & Lilienthal, A. J. (2010). Path planning in 3d environments using the normal distributions transform. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei. New York: IEEE Press.Google Scholar
  49. Sturm, J., Engelhard, N., Endres, F., Burgard, W., & Cremers, D. (2012). A benchmark for the evaluation of RGB-D slam systems. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: IEEE Press. http://cvpr.in.tum.de/data/datasets/rgbd-dataset/download.
  50. Surmann, H., Nüchter, A., & Hertzberg, J. (2003). An autonomous mobile robot with a 3d laser range finder for 3d exploration and digitalization of indoor environments. Robotics and Autonomous Systems, 45(3), 181–198.CrossRefGoogle Scholar
  51. Triebel, R., Pfaff, P., & Burgard, W. (2006). Multi-level surface maps for outdoor terrain mapping and loop closing. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing. New York: IEEE Press.Google Scholar
  52. Weise, T., Wismer, T., Leibe, B., & Van Gool, L. (2009). In-hand scanning with online loop closure. In ICCV Workshops, Kyoto.Google Scholar
  53. Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., & McDonald, J. (2012). Kintinuous: Spatially extended KinectFusion. Technical report. http://hdl.handle.net/1721.1/71756.
  54. Wilhelms, J., & Van Gelder, A. (1992). Octrees for faster isosurface generation. ACM Transactions on Graphics, 11(3), 201–227.MATHCrossRefGoogle Scholar
  55. Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., & Burgard, W. (2010). OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems. In Proceedings of the ICRA Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation (IROS), Anchorage.Google Scholar
  56. Wurm, K. M., Hennes, D., Holz, D., Rusu, R. B., Stachniss, C., Konolige, K., & Burgard, W. (2011). Hierarchies of octrees for efficient 3d mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA. New York: IEEE Press.Google Scholar
  57. Yguel, M., Aycard, O., & Laugier, C. (2007a). Update policy of dense maps: Efficient algorithms and sparse representation. In Results of the International Conference Field and Service Robotics, FSR 2007, Chamonix, Vol. 42, pp. 23–33.Google Scholar
  58. Yguel, M., Keat, C. T. M., Braillon, C., Laugier, C., & Aycard, O. (2007b). Dense mapping for range sensors: Efficient algorithms and sparse representations. In Proceedings of Robotics: Science and Systems. Cambridge: MIT Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Armin Hornung
    • 1
  • Kai M. Wurm
    • 1
  • Maren Bennewitz
    • 1
  • Cyrill Stachniss
    • 1
  • Wolfram Burgard
    • 1
  1. 1.Department of Computer ScienceUniversity of Freiburg, Georges-Koehler-AlleeFreiburgGermany

Personalised recommendations