Autonomous Robots

, Volume 34, Issue 1–2, pp 73–91 | Cite as

Angle-based homing from a reference image set using the 1D trifocal tensor

  • M. Aranda
  • G. López-Nicolás
  • C. Sagüés


This paper presents a visual homing method for a robot moving on the ground plane. The approach employs a set of omnidirectional images acquired previously at different locations (including the goal position) in the environment, and the current image taken by the robot. We present as contribution a method to obtain the relative angles between all these locations, using the computation of the 1D trifocal tensor between views and an indirect angle estimation procedure. The tensor is particularly well suited for planar motion and provides important robustness properties to our technique. Another contribution of our paper is a new control law that uses the available angles, with no range information involved, to drive the robot to the goal. Therefore, our method takes advantage of the strengths of omnidirectional vision, which provides a wide field of view and very precise angular information. We present a formal proof of the stability of the proposed control law. The performance of our approach is illustrated through simulations and different sets of experiments with real images.


Visual control Mobile robots  Omnidirectional vision Navigation 



This work was supported by Ministerio de Ciencia e Innovación/European Union (projects DPI2009-08126 and DPI2012-32100), by Ministerio de Educación under FPU grant AP2009-3430, and by DGA-FSE (group T04).


  1. Aranda, M., López-Nicolás, G., & Sagüés, C. (2010). Omnidirectional visual homing using the 1D trifocal tensor. In IEEE international conference on robotics and automation (pp. 2444–2450).Google Scholar
  2. Argyros, A. A., Bekris, K. E., Orphanoudakis, S. C., & Kavraki, L. E. (2005). Robot homing by exploiting panoramic vision. Autonomous Robots, 19(1), 7–25.CrossRefGoogle Scholar
  3. Åström, K., & Oskarsson, M. (2000). Solutions and ambiguities of the structure and motion problem for 1D retinal vision. Journal of Mathematical Imaging and Vision, 12(2), 121–135.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Basri, R., Rivlin, E., & Shimshoni, I. (1999). Visual homing: Surfing on the epipoles. International Journal of Computer Vision, 33(2), 117–137.CrossRefGoogle Scholar
  5. Becerra, H., Lopez-Nicolas, G., & Sagues, C. (2010). Omnidirectional visual control of mobile robots based on the 1D trifocal tensor. Robotics and Autonomous Systems, 58(6), 796–808.CrossRefGoogle Scholar
  6. Booij, O., Terwijn, B., Zivkovic, Z., & Kröse, B. (2007). Navigation using an appearance based topological map. In IEEE international conference on robotics and automation (pp. 3927–3932).Google Scholar
  7. Booij, O., Zivkovic, Z., & Kröse, B. (2006). Sparse appearance based modeling for robot localization. In IEEE international conference on intelligent robots and systems (pp. 1510–1515).Google Scholar
  8. Chaumette, F., & Hutchinson, S. (2006). Visual servo control, part I: Basic approaches. IEEE Robotics and Automation Magazine, 13(4), 82–90.CrossRefGoogle Scholar
  9. Chen, J., Dixon, W., Dawson, M., & McIntyre, M. (2006). Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Transactions on Robotics, 22(2), 407–416.Google Scholar
  10. Cherubini, A., & Chaumette, F. (2011). Visual navigation with obstacle avoidance. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1593–1598).Google Scholar
  11. Chesi, G., & Hashimoto, K. (2004). A simple technique for improving camera displacement estimation in eye-in-hand visual servoing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1239–1242.CrossRefGoogle Scholar
  12. Chesi, G., & Hashimoto, K. (Eds.). (2010). Visual servoing via advanced numerical methods. In Lecture notes in control and information sciences (Vol. 401). New York: Springer.Google Scholar
  13. Churchill, D., & Vardy, A. (2008). Homing in scale space. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1307–1312).Google Scholar
  14. Courbon, J., Mezouar, Y., & Martinet, P. (2008). Indoor navigation of a non-holonomic mobile robot using a visual memory. Autonomous Robots, 25(3), 253–266.CrossRefGoogle Scholar
  15. Dellaert, F., & Stroupe, A. W. (2002). Linear 2D localization and mapping for single and multiple robot scenarios. In IEEE international conference on robotics and automation (pp. 688–694).Google Scholar
  16. DeSouza, G. N., & Kak, A. C. (2002). Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 237–267.CrossRefGoogle Scholar
  17. Franz, M. O., Schölkopf, B., Georg, P., Mallot, H. A., & Bülthoff, H. H. (1998). Learning view graphs for robot navigation. Autonomous Robots, 5(1), 111–125.Google Scholar
  18. Goedemé, T., Nuttin, M., Tuytelaars, T., & Van Gool, L. (2007). Omnidirectional vision based topological navigation. International Journal of Computer Vision, 74(3), 219–236.Google Scholar
  19. Guerrero, J. J., Murillo, A. C., & Sagüés, C. (2008). Localization and matching using the planar trifocal tensor with bearing-only data. IEEE Transactions on Robotics, 24(2), 494–501.CrossRefGoogle Scholar
  20. Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  21. Hong, J., Tan, X., Pinette, B., Weiss, R., & Riseman, E. M. (1992). Image-based homing. Control Systems Magazine, IEEE, 12(1), 38–45.Google Scholar
  22. Khalil, H. K. (2001). Nonlinear systems (3rd ed.). New York: Prentice Hall.Google Scholar
  23. Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., & Wehner, R. (2000). A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, 30(1–2), 39–64.CrossRefGoogle Scholar
  24. Lim, J., & Barnes, N. (2009). Robust visual homing with landmark angles. In Proceedings of robotics: Science and systems, Seattle.Google Scholar
  25. López-Nicolás, G., Guerrero, J. J., & Sagüés, C. (2010a). Multiple homographies with omnidirectional vision for robot homing. Robotics and Autonomous Systems, 58(6), 773–783.CrossRefGoogle Scholar
  26. López-Nicolás, G., Guerrero, J. J., & Sagüés, C. (2010b). Visual control through the trifocal tensor for nonholonomic robots. Robotics and Autonomous Systems, 58(2), 216–226.CrossRefGoogle Scholar
  27. López-Nicolás, G., & Sagüés, C. (2011). Vision-based exponential stabilization of mobile robots. Autonomous Robots, 30(3), 293–306.CrossRefGoogle Scholar
  28. López-Nicolás, G., Sagüés, C., Guerrero, J., Kragic, D., & Jensfelt, P. (2008). Switching visual control based on epipoles for mobile robots. Robotics and Autonomous Systems, 56(7), 592–603.CrossRefGoogle Scholar
  29. Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.CrossRefGoogle Scholar
  30. Möller, R., Vardy, A., Kreft, S., & Ruwisch, S. (2007). Visual homing in environments with anisotropic landmark distribution. Autonomous Robots, 23(3), 231–245.CrossRefGoogle Scholar
  31. Quan, L. (2001). Two-way ambiguity in 2D projective reconstruction from three uncalibrated 1D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 212–216.CrossRefGoogle Scholar
  32. Shademan, A., & Jägersand, M. (2010). Three-view uncalibrated visual servoing. In IEEE international conference on intelligent robots and systems (pp. 6234–6239).Google Scholar
  33. Shashua, A., & Werman, M. (1995). Trilinearity of three perspective views and its associated tensor. In International conference on computer vision (pp. 920–925).Google Scholar
  34. Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control. New York: Prentice Hall.zbMATHGoogle Scholar
  35. Stürzl, W., & Mallot, H. A. (2006). Efficient visual homing based on Fourier transformed panoramic images. Robotics and Autonomous Systems, 54(4), 300–313.CrossRefGoogle Scholar
  36. Weber, K., Venkatesh, S., & Srinivasany, M. V. (1998). Insect-inspired robotic homing. Adaptive Behavior, 7(1), 65–97.CrossRefGoogle Scholar
  37. Zivkovic, Z., Bakker, B., & Kröse, B. (2006). Hierarchical map building and planning based on graph partitioning. In IEEE international conference on robotics and automation (pp. 803–809).Google Scholar
  38. Zivkovic, Z., Booij, O., & Krose, B. (2007). From images to rooms. Robotics and Autonomous Systems, 55(5), 411–418.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Instituto de Investigación en Ingeniería de AragónUniversidad de ZaragozaZaragozaSpain

Personalised recommendations