Autonomous Robots

, Volume 34, Issue 1–2, pp 1–18 | Cite as

Autonomous over-the-horizon navigation using LIDAR data

  • Ioannis Rekleitis
  • Jean-Luc Bedwani
  • Erick Dupuis
  • Tom Lamarche
  • Pierre Allard
Article

Abstract

In this paper we present the approach for autonomous planetary exploration developed at the Canadian Space Agency. The goal of this work is to enable autonomous navigation to remote locations, well beyond the sensing horizon of the rover, with minimal interaction with a human operator. We employ LIDAR range sensors due to their accuracy, long range and robustness in the harsh lighting conditions of space. Irregular Triangular Meshes (ITMs) are used for representing the environment, providing an accurate, yet compact, spatial representation. In this paper a novel path-planning technique through the ITM is introduced, which guides the rover through flat terrain and safely away from obstacles. Experiments performed in CSA’s Mars emulation terrain, validating our approach, are also presented.

Keywords

Space robotics Planetary exploration Mapping Path planning 

References

  1. Kitware inc. (2005). Visualization toolkits. http://www.vtk.org, Website (accessed: September 2005).
  2. Alami, R., Chatila, R., Fleury, S., Ghallab, M., & Ingrand, F. (1998). An architecture for autonomy. The International Journal of Robotics Research, 17(4), 315–337. CrossRefGoogle Scholar
  3. Astolfi, A. (1999). Exponential stabilization of wheeled mobile robot via discontinuous control. Journal of Dynamic Systems Measurement and Control, 121–126. Google Scholar
  4. Bares, J., Hebert, M., Kanade, T., Krotkov, E., Mitchell, T., Simmons, R., & Whittaker, W. (1989). Ambler: an autonomous rover for planetary exploration. IEEE Computer, 22(6), 18–26. CrossRefGoogle Scholar
  5. Barfoot, T., Furgale, P., Stenning, B., Carle, P., Thomson, L., Osinski, G., Daly, M., & Ghafoor, N. (2011). Field testing of a rover guidance, navigation, and control architecture to support a ground-ice prospecting mission to Mars. Robotics and Autonomous Systems, 59(6), 472–488. doi:10.1016/j.robot.2011.03.004. CrossRefGoogle Scholar
  6. Biesiadecki, J., Leger, C., & Maimone, M. (2005). Tradeoffs between directed and autonomous on the mars exploration rovers. In Proc. of int. symposium of robotics research, San Francisco. Google Scholar
  7. Carsten, J., Rankin, A., Ferguson, D., & Stentz, A. (2008). Global planning on the mars exploration rovers: software integration and surface testing. Journal of Field Robotics, 26(4), 337–357. CrossRefGoogle Scholar
  8. Chatila, R., Alami, R., Lacroix, S., Perret, J., & Proust, C. (1993). Planet exploration by robots: from mission planning to autonomous navigation. In 1993 international conference on advanced robotics, Tokyo (Japan). Google Scholar
  9. Chatila, R., Lacroix, S., Siméon, T., & Herrb, M. (1995). Planetary exploration by a mobile robot: mission teleprogramming and autonomous navigation. Autonomous Robots Journal, 2(4), 333–344. CrossRefGoogle Scholar
  10. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271. MathSciNetMATHCrossRefGoogle Scholar
  11. Dupuis, E., Langlois, P., Bedwani, J. L., Gingras, D., Salerno, A., Allard, P., Gemme, S., L’Archevêque, R., & Lamarche, T. (2010). The avatar explore experiments: results and lessons learned. In Tenth international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS), Hokkoido, Japan. Google Scholar
  12. Fowler, R. J., & Little, J. J. (1979). Automatic extraction of irregular network digital terrain models. In SIGGRAPH’79: proc. of the 6th annual conference on computer graphics & interactive techniques (pp. 199–207). Google Scholar
  13. Gat, E., Desai, R., Ivlev, R., Loch, J., & Miller, D. (1994). Behavior control for robotic exploration of planetary surfaces. IEEE Transactions on Robotics and Automation, 10(4), 490–503. CrossRefGoogle Scholar
  14. Gingras, D., Lamarche, T., Bedwani, J. L., & Dupuis, E. (2010). Rough terrain reconstruction for rover motion planning. In Seventh Canadian conference computer and robot vision, Ottawa, Canada (pp. 191–198). Google Scholar
  15. Giralt, G., & Boissier, L. (1992). The French planetary rover VAP: concept and current developments. In Proc. of the 1992 lEEE/RSJ int. conf. on intelligent robots and systems (Vol. 2, pp. 1391–1398). Google Scholar
  16. Goldberg, S., Maimone, M., & Matthies, L. (2002). Stereo vision and rover navigation software for planetary exploration. In Proc. of IEEE aerospace conf. (Vol. 5, pp. 2025–2036). Google Scholar
  17. Hayati, S., Udomkesmalee, G., & Caffrey, R. (2004). Initiating the 2002 mars science laboratory (MSL) focused technology program. In IEEE aerospace conf., Golden, CO, USA. Google Scholar
  18. Hebert, M., et al. (1989). Terrain mapping for a roving planetary explorer. In Proc. of the IEEE int. conf. on robotics and automation (ICRA’89) (Vol. 2, pp. 997–1002). CrossRefGoogle Scholar
  19. Howard, A. M. & Tunstel, E. W. (Eds.) (2006). Intelligence for space robotics. San Antonio: TSI Press. Chapter: MER surface navigation and mobility. Google Scholar
  20. Huntsberger, T., Pirjanian, P., Trebi-Ollennu, A., Nayar, H. D., Aghazarian, H., Ganino, A., Garrett, M., Joshi, S., & Schenker, P. (2003). Campout: a control architecture for tightly coupled coordination of multirobot systems for planetary surface exploration. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 33(5), 550–559. CrossRefGoogle Scholar
  21. Ishigami, G., Nagatani, K., & Yoshida, K. (2011). Path planning and evaluation for planetary rovers based on dynamic mobility index. In IEEE/RSJ international conference on intelligent robots and systems (pp. 601–606). Google Scholar
  22. Johnson, A., Goldberg, S., Yang, C., & Matthies, L. (2008). Robust and efficient stereo feature tracking for visual odometry. In IEEE int. conf. on robotics and automation (pp. 39–46). Google Scholar
  23. Kelly, A., et al. (2006). Toward reliable off-road autonomous vehicles operating in challenging environments. The International Journal of Robotics Research, 25(5–6), 449–483. CrossRefGoogle Scholar
  24. Krotkov, E., & Hoffman, R. (1994). Terrain mapping for a walking planetary rover. IEEE Trans. on Robotics & Automation, 10(6). Google Scholar
  25. Kubota, T., Ejiri, R., Kunii, Y., & Nakatani, I. (2006). Autonomous behavior planning scheme for exploration rover. In Second IEEE int. conf. on space mission challenges for information technology (SMC-IT 2006) (p. 7). Google Scholar
  26. Kunii, Y., Tsuji, S., & Watari, M. (2003). Accuracy improvement of shadow range finder: SRF for 3D surface measurement. In Proc. of IEEE/RSJ int. conf. on intelligent robots and systems (IROS 2003) (Vol. 3, pp. 3041–3046). CrossRefGoogle Scholar
  27. Lamarche, T. (2009). Conception et prototypage d’un capteur LIDAR 3D pour la robotique mobile. Master’s thesis, Ecole Polytechnique de Montréal. Google Scholar
  28. Liegeois, A., & Moignard, C. (1993). Lecture notes in computer science: Vol. 708. Geometric reasoning for perception and action (pp. 51–65). Berlin: Springer. Chapter: Optimal motion planning of a mobile robot on a triangulated terrain model. CrossRefGoogle Scholar
  29. Maimone, M., Biesiadecki, J., Tunstel, E., Cheng, Y., & Leger, C. (2006). Int. for space robotics (pp. 45–69). San Antonio: TSI Press. Chapter: Surface navigation and mobility intelligence on the Mars exploration rovers. Google Scholar
  30. Mandow, A., Cantador, T., Garcia-Cerezo, A., Reina, A., Martinez, J., & Morales, J. (2011). Fuzzy modeling of natural terrain elevation from a 3D scanner point cloud. In IEEE 7th international symposium on intelligent signal processing (pp. 1–5). Google Scholar
  31. Martin, E., L’Archevêque, R., Gemme, S., Rekleitis, I., & Dupuis, E. (2008). The avatar project: remote robotic operations conducted from the international space station. IEEE Robotics & Automation Magazine, 14(4), 20–27. CrossRefGoogle Scholar
  32. Matthies, L., & Shafer, S. (1987). Error modeling in stereo navigation. IEEE Journal of Robotics and Automation, 3(3), 239–250. CrossRefGoogle Scholar
  33. Montemerlo, M., Thrun, S., Dahlkamp, H., Stavens, D., & Strohband, S. (2006). Winning the DARPA grand challenge with an AI robot. In Proc. of the AAAI nat. conf. on artificial intelligence. Google Scholar
  34. Mora, A., Ishigami, G., Nagatani, K., & Yoshida, K. (2008). Sensing position planning for lunar exploration rovers. In IEEE international conference on mechatronics and automation (pp. 732–737). Google Scholar
  35. Mora, A., Nagatani, K., Yoshida, K., & Chacin, M. (2009). A path planning system based on 3D occlusion detection for lunar exploration rovers. In Third IEEE international conference on space mission challenges for information technology. Google Scholar
  36. Mourikis, A., Trawny, N., Roumeliotis, S., Johnson, A., & Matthies, L. (2007). Vision-aided inertial navigation for precise planetary landing: analysis and experiments. In Proc. robotics: science and systems conf. (RSS’07), Atlanta, GA. Google Scholar
  37. Nesnas, I., Wright, A., Bajracharya, M., Simmons, R., & Estlin, T. (2003). Claraty and challenges of developing interoperable robotic software. In Int. conf. on intelligent robots and systems (IROS), Nevada (pp. 2428–2435). Google Scholar
  38. Nsasi Bakambu, J., Gemme, S., & Dupuis, E. (2006). Rover localization through 3D terrain registration. In IEEE/RSJ international conference on intelligent robots and systems, Beijing, China. Google Scholar
  39. Preparata, F. P., & Shamos, M. I. (1985). Computational geometry: an introduction. New York: Springer. CrossRefGoogle Scholar
  40. Rekleitis, I., Bedwani, J. L., Gemme, S., & Dupuis, E. (2007). Terrain modelling for planetary exploration. In Computer and robot vision (CRV), Montreal, QC, Canada (pp. 243–249). Google Scholar
  41. Rekleitis, I., Bedwani, J. L., Dupuis, E., & Allard, P. (2008a). Path planning for planetary exploration. In 5th Canadian conf. on computer and robot vision (CRV) (pp. 61–68). Google Scholar
  42. Rekleitis, I., Bedwani, J. L., Gingras, D., & Dupuis, E. (2008b). Experimental results for over-the-horizon planetary exploration using a Lidar sensor. In 11th int. symp. on experimental robotics (ISER’08). Google Scholar
  43. Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In Proc. of the 3rd intl. conf. on 3D digital imaging and modeling (pp. 145–152). CrossRefGoogle Scholar
  44. Rusu, R. B., Sundaresan, A., Morisset, B., Hauser, K., Agrawal, M., Latombe, J. C., & Beetz, M. (2009). Leaving flatland: efficient real-time 3D perception and motion planning. Journal of Field Robotics (Special Issue on 3D Mapping). http://files.rbrusu.com/publications/Rusu09JFR-LFlatland.pdf.
  45. Silver, D., Bagnell, J. A. D., & Stentz, A. T. (2010). Learning from demonstration for autonomous navigation in complex unstructured terrain. The International Journal of Robotics Research, 29(12), 1565–1592. CrossRefGoogle Scholar
  46. Silver, D., Ferguson, D., Morris, A. C., & Thayer, S. (2006). Topological exploration of subterranean environments. Journal of Field Robotics, 23(1), 395–415. CrossRefGoogle Scholar
  47. Simmons, R., Krotkov, E., Chrisman, L., Cozman, F., Goodwin, R., Hebert, M., Katragadda, L., Koenig, S., Krishnaswamy, G., Shinoda, Y., Whittaker, W., & Klarer, P. (1995). Experience with rover navigation for lunar-like terrains. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 441–446). Google Scholar
  48. Singh, S., Simmons, R., Smith, T., Stentz, A., Verma, V., Yahja, A., & Schwehr, K. (2000). Recent progress in local and global traversability for planetary rovers. In Proceedings of the IEEE international conference on robotics and automation (Vol. 2, pp. 1194–1200). Google Scholar
  49. Triebel, R., Pfaff, P., & Burgard, W. (2006). Multi-level surface maps for outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (IROS), Beijing, China (pp. 2276–2282). Google Scholar
  50. Vago, J. (2004). Overview of exomars mission preparation. In 8th ESA workshop on advanced space technologies for robotics & automation, Noordwijk, The Netherlands. Google Scholar
  51. Vasudevan, S., Ramos, F., Nettleton, E., & Durrant-Whyte, H. (2010). A mine on its own: fully autonomous, remotely operated mine. IEEE Robotics and Automation Magazine, 63–73. Google Scholar
  52. Volpe, R. (2006). Rover functional autonomy development for the mars mobile science laboratory. In IEEE aerospace conf. Google Scholar
  53. Wettergreen, D., et al. (2005). Second experiments in the robotic investigation of life in the Atacama desert of Chile. In 8th int. symp. on artificial intelligence, robotics and automation in space. Google Scholar
  54. Wettergreen, D., Jonak, D., Kohanbash, D., Moreland, S. J., Spiker, S., & Teza, J. (2009). Field experiments in mobility and navigation with a lunar rover prototype. In Field and service robotics. Google Scholar
  55. Wright, J., Trebi-Ollennu, A., Hartman, F., Cooper, B., Maxwell, S., Yen, J., & Morrison, J. (2005). Terrain modelling for in-situ activity planning and rehearsal for the mars exploration rovers. In IEEE int. conf. on systems, man and cybernetics (Vol. 2, pp. 1372–1377). Google Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2012

Authors and Affiliations

  • Ioannis Rekleitis
    • 1
  • Jean-Luc Bedwani
    • 2
  • Erick Dupuis
    • 3
  • Tom Lamarche
    • 3
  • Pierre Allard
    • 3
  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada
  2. 2.Institut de recherche d’Hydro-Québec (IREQ)VarennesCanada
  3. 3.Canadian Space AgencySaint-HubertCanada

Personalised recommendations