Autonomous Robots

, Volume 33, Issue 4, pp 427–444 | Cite as

A comparison of path planning strategies for autonomous exploration and mapping of unknown environments

Article

Abstract

To date, a large number of algorithms to solve the problem of autonomous exploration and mapping has been presented. However, few efforts have been made to compare these techniques. In this paper, an extensive study of the most important methods for autonomous exploration and mapping of unknown environments is presented. Furthermore, a representative subset of these techniques has been chosen to be analysed. This subset contains methods that differ in the level of multi-robot coordination and in the grade of integration with the simultaneous localization and mapping (SLAM) algorithm. These exploration techniques were tested in simulation and compared using different criteria as exploration time or map quality. The results of this analysis are shown in this paper. The weaknesses and strengths of each strategy have been stated and the most appropriate algorithm for each application has been determined.

Keywords

Autonomous exploration Mapping of unknown environments Path planning for multiple mobile robot systems 

References

  1. Arkin, R., & Diaz, J. (2002). Line-of-sight constrained exploration for reactive multiagent robotic teams. In: Proceedings of the international workshop on advanced motion control (AMC’02), Maribor, Slovenia. Google Scholar
  2. Balaguer, B., Balakirsky, S., Carpin, S., & Visser, A. (2009). Evaluating maps produced by urban search and rescue robots: lessons learned from RoboCup. Autonomous Robots, 27(4), 449–464. CrossRefGoogle Scholar
  3. Balch, T., & Arkin, R. (1993). Avoiding the past: a simple but effective strategy for reactive navigation. In Proceedings of the IEEE international conference on robotics and automation (ICRA’93). Google Scholar
  4. Batalin, M., & Sukhatme, G. (2007). The design and analysis of an efficient local algorithm for coverage and exploration based on sensor network deployment. IEEE Transactions on Robotics, 23(4), 661–675. CrossRefGoogle Scholar
  5. Bourgoult, F., Makarenko, A., Williams, S., Grocholsky, B., & Durrant-Whyte, F. (2002). Information based adaptive robotic exploration. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS’02), Lausanne, Switzerland. Google Scholar
  6. Burgard, W., Moors, M., Fox, D., Simmons, R., & Thrun, S. (2000). Collaborative multi-robot exploration. In Proceedings of the IEEE international conference on robotics and automation (ICRA’00) (Vol. 1, pp. 476–481). Google Scholar
  7. Burgard, W., Moors, M., Stachniss, C., & Schneider, F. (2005). Coordinated multi-robot exploration. IEEE Transactions on Robotics, 21(3), 376–386. CrossRefGoogle Scholar
  8. Castellanos, J., Neira, J., & Tardós, J. D. (2006). Map building and SLAM algorithms. Series in control engineering (pp. 335–371). Boca Raton: CRC, Taylor & Francis Group. Google Scholar
  9. Choset, H., & Burdick, J. (2000). Sensor-based exploration: the hierarchical generalized Voronoi graph. International Journal of Robotics Research, 19(2), 96–125. CrossRefGoogle Scholar
  10. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271. MathSciNetMATHCrossRefGoogle Scholar
  11. Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241. CrossRefGoogle Scholar
  12. Feder, H., Leonard, J., & Smith, C. (1999). Adaptive mobile robot navigation and mapping. International Journal of Robotics Research, 18(7), 650–668. CrossRefGoogle Scholar
  13. Fox, D., Ko, J., Limketkai, B., Schulz, D., & Stewart, B. (2006). Distributed multi-robot exploration and mapping. Proceedings of the IEEE, 94(7), 1325–1339. CrossRefGoogle Scholar
  14. Franchi, A., Freda, L., Oriolo, G., & Vendittelli, M. (2007a). A decentralized strategy for cooperative robot exploration. In Proceedings of the 1st international conference on robot communication and coordination (p. 7). New York: IEEE Press. Google Scholar
  15. Franchi, A., Freda, L., Oriolo, G., & Vendittelli, M. (2007b). A randomized strategy for cooperative robot exploration. In Proceedings of the IEEE international conference on robotics and automation (ICRA’07), Roma, Italy. Google Scholar
  16. Franchi, A., Freda, L., Oriolo, G., & Vendittelli, M. (2009). The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Transactions on Mechatronics, 14(2), 163–175. CrossRefGoogle Scholar
  17. Freda, L., & Oriolo, G. (2005). Frontier-based probabilistic strategies for sensor-based exploration. In Proceedings of the IEEE international conference on robotics and automation (ICRA’05), Barcelona, Spain. Google Scholar
  18. Freda, L., Loiudice, F., & Oriolo, G. (2006). A randomized method for integrated exploration. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS’06), Beijing, China. Google Scholar
  19. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139. MathSciNetMATHCrossRefGoogle Scholar
  20. Gifford, C. M., Webb, R., Bley, J., Leung, D., Calnon, M., Makarewicz, J., Banz, B., & Agah, A. (2010). A novel low-cost, limited-resource approach to autonomous multi-robot exploration and mapping. Robotics and Autonomous Systems, 58(2), 186–202. CrossRefGoogle Scholar
  21. González-Baños, H. H., & Latombe, J. C. (2002). Navigation strategies for exploring indoor environments. International Journal of Robotics Research, 21(10), 829–848. CrossRefGoogle Scholar
  22. Grabowski, R., Khosla, P., & Choset, H. (2003). Autonomous exploration via regions of interest. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS’03), Las Vegas, Nevada, USA. Google Scholar
  23. Hartigan, J., & Wong, M. (1979). A k-means clustering algorithm. Journal of the Royal Statistical Society Series C, Applied statistics, 28, 100–108. MATHGoogle Scholar
  24. Hougen, D. F., Erickson, M. D., Rybski, P. E., Stoeter, S. A., Gini, M., & Papanikolopoulos, N. (2000). Autonomous mobile robots and distributed exploratory missions. In Proceedings of the 5th international symposium on distributed autonomous robotic systems (pp. 221–230). CrossRefGoogle Scholar
  25. Juliá, M., Gil, A., Payá, L., & Reinoso, O. (2008). Local minima detection in potential field based cooperative multi-robot exploration. International Journal of Factory Automation, Robotics and Soft Computing, 3. Google Scholar
  26. Juliá, M., Reinoso, O., Gil, A., Ballesta, M., & Payá, L. (2010). A hybrid solution to the multi-robot integrated exploration problem. Engineering Applications of Artificial Intelligence, 23(4), 473–486. CrossRefGoogle Scholar
  27. Juliá, M., Reinoso, O., Gil, A., Ballesta, M., & Payá, L. (2011). Behaviour based multi-robot integrated exploration. International Journal of Innovative Computing, Information and Control, 7(9). Google Scholar
  28. Kleiner, A., Prediger, J., & Nebel, B. (2006). RFID technology-based exploration and SLAM for search and rescue. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS’06), Beijing, China. Google Scholar
  29. Kollar, T., & Roy, N. (2008). Trajectory optimization using reinforcement learning for map exploration. International Journal of Robotics Research, 27(2), 175–196. CrossRefGoogle Scholar
  30. Kuhn, H. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1), 83–97. MathSciNetCrossRefGoogle Scholar
  31. Kuipers, B., & Byun, Y. (1991). A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems, 8, 47–63. CrossRefGoogle Scholar
  32. Lau, H. (2003). Behavioural approach for multi-robot exploration. In Proceedings of the Australasian conference on robotics and automation (ACRA’03), Brisbane, Australia. Google Scholar
  33. Lee, D., & Recce, M. (1997). Quantitative evaluation of the exploration strategies of a mobile robot. International Journal of Robotics Research, 16(4), 413–447. CrossRefGoogle Scholar
  34. Lidoris, G., Rohrmueller, F., Wollherr, D., & Buss, M. (2009). The autonomous city explorer (ACE) project—mobile robot navigation in highly populated urban environments. In Proceedings of the IEEE international conference on robotics and automation (ICRA’09), Kobe, Japan. Google Scholar
  35. Makarenko, A., Williams, S., Bourgoult, F., & Durrant-Whyte, F. (2002). An experiment in integrated exploration. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS’02), Lausanne, Switzerland. Google Scholar
  36. Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., & Doucet, A. (2009). A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonomous Robots, 27(2), 93–103. CrossRefGoogle Scholar
  37. Montemerlo, M., & Thrun, S. (2003). Simultaneous localization and mapping with unknown data association using FastSLAM. In Proceedings of the IEEE international conference on robotics and automation (ICRA’03), Taipei, Taiwan. Google Scholar
  38. Moravec, H., & Elfes, A. (1985). High resolution maps from wide angle sonar. In Proceedings of the IEEE international conference on robotics and automation (ICRA’85). Google Scholar
  39. Murphy, L., & Newman, P. (2008). Using incomplete online metric maps for topological exploration with the gap navigation tree. In Proceedings of the IEEE international conference on robotics and automation (ICRA’08), Pasadena, CA, USA. Google Scholar
  40. Murray, D., & Little, J. (2000). Using real-time stereo vision for mobile robot navigation. Autonomous Robots, 8(2), 161–171. CrossRefGoogle Scholar
  41. Nevatia, Y., Stoyanov, T., Rathnam, R., Pfingsthorn, M., Markov, S., Ambrus, R., & Birk, A. (2008). Augmented autonomy: improving human-robot team performance in urban search and rescue. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS’08) (pp. 2103–2108). CrossRefGoogle Scholar
  42. Newman, P., Bosse, M., & Leonard, J. (2003). Autonomous feature-based exploration. In Proceedings of the IEEE international conference on robotics and automation (ICRA’03), Taipei, Taiwan. Google Scholar
  43. Pei, Y., Mutka, M., & Xi, N. (2010). Coordinated multi-robot real-time exploration with connectivity and bandwidth awareness. In Proceedings of the IEEE international conference on robotics and automation (ICRA’10) (pp. 5460–5465). New York: IEEE. Google Scholar
  44. Porta, J. M., Vlassis, N., Spaan, M. T., & Poupart, P. (2006). Point-based value iteration for continuous POMDPs. Journal of Machine Learning Research, 7, 2329–2367. MathSciNetMATHGoogle Scholar
  45. Prestes, E., Engel, P., Trevisan, M., & Idiart, M. (2002). Exploration method using harmonic functions. Robotics and Autonomous Systems, 40(1), 25–42. CrossRefGoogle Scholar
  46. Rekleitis, I., Sim, R., Dudek, G., & Milios, E. (2001). Collaborative exploration for the construction of visual maps. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS’01), Wailea, Hawaii. Google Scholar
  47. Rooker, M. N., & Birk, A. (2007). Multi-robot exploration under the constraints of wireless networking. Control Engineering Practice, 15(4), 435–445. CrossRefGoogle Scholar
  48. Santosh, D., Achar, S., & Jawahar, C. (2008). Autonomous image-based exploration for mobile robot navigation. In Proceedings of the IEEE international conference on robotics and automation (ICRA’08), Pasadena, CA, USA. Google Scholar
  49. Schmidt, D., Luksch, T., Wettach, J., & Berns, K. (2006). Autonomous behavior-based exploration of office environments. In Proceedings of the international conference on informatics in control, automation and robotics (ICINCO’06), Setúbal, Portugal. Google Scholar
  50. Schultz, A., Adams, W., & Yamauchi, B. (1999). Integrating exploration, localization, navigation and planning with a common representation. Autonomous Robots, 6, 293–308. CrossRefGoogle Scholar
  51. Sheng, W., Yang, Q., Tan, J., & Xi, N. (2006). Distributed multi-robot coordination in area exploration. Robotics and Autonomous Systems, 54, 945–955. CrossRefGoogle Scholar
  52. Sim, R., & Little, J. J. (2009). Autonomous vision-based robotic exploration and mapping using hybrid maps and particle filters. Image and Vision Computing, 27(1–2), 167–177. CrossRefGoogle Scholar
  53. Sim, R., & Roy, N. (2005). Global A-optimal robot exploration in SLAM. In Proceedings of the IEEE international conference on robotics and automation (ICRA’05) (pp. 661–666). CrossRefGoogle Scholar
  54. Sim, R., Dudek, G., & Roy, N. (2004). On line control policy optimization for minimizing map uncertainty during exploration. In Proceedings of the IEEE international conference on robotics and automation (ICRA’04), New Orleans, LA, USA. Google Scholar
  55. Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., & Younes, H. (2000). Coordination for multi-robot exploration and mapping. In Proceedings of the AAAI national conference on artificial intelligence, Austin, TX, USA. Google Scholar
  56. Solanas, A., & Garcia, M. (2004). Coordinated multi-robot exploration through unsupervised clustering of unknown space. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS’04), Sendai, Japan (pp. 717–721). Google Scholar
  57. Stachniss, C. (2009). Robotic mapping and exploration. Springer tracts in advanced robotics. Berlin: Springer. CrossRefGoogle Scholar
  58. Stachniss, C., Grisetti, G., & Burgard, W. (2005a). Information gain-based exploration using Rao-Blackwellized particle filters. In Proceedings of robotics: science and systems (RSS’05), Cambridge, MA, USA. Google Scholar
  59. Stachniss, C., Haehnel, D., Burgard, W., & Grisetti, G. (2005b). On actively closing loops in grid-based FastSLAM. RSJ Advanced Robotics, 19(10), 1059–1080. CrossRefGoogle Scholar
  60. Stachniss, C., Mozos, O. M., & Burgard, W. (2006). Speeding-up multi-robot exploration by considering semantic place information. In Proceedings of the IEEE international conference on robotics and automation (ICRA’06), Orlando, FL, USA. Google Scholar
  61. Surmann, H., Nuechter, A., & Hertzberg, J. (2003). An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robotics and Autonomous Systems, 45(3–4), 181–198. CrossRefGoogle Scholar
  62. Thornburg, K., & Thomas, G. (2009). Robotic exploration utility for urban search and rescue tasks. Journal of Computers, 4(10), 975–980. CrossRefGoogle Scholar
  63. Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, D., Morris, A., Omohundro, Z., Reverte, C., & Whittaker, W. (2004). Autonomous exploration and mapping of abandoned mines. IEEE Robotics and Automation Magazine, 11(4), 79–91. CrossRefGoogle Scholar
  64. Tovar, B., Munoz-Gómez, L., Murrieta-Cid, R., Alencastre-Miranda, M., Monroy, R., & Hutchinson, S. (2006). Planning exploration strategies for simultaneous localization and mapping. Robotics and Autonomous Systems, 54(4), 314–331. CrossRefGoogle Scholar
  65. Vazquez, J., & Malcolm, C. (2004). Distributed multirobot exploration maintaining a mobile network. In Proceedings of the 2nd international IEEE conference on intelligent systems (pp. 113–118). Google Scholar
  66. Wullschleger, F. H., Arras, KO, & Vestli, S. J. (1999). A flexible exploration framework for map building. In Third European workshop on advanced mobile robots (Eurobot’99). Google Scholar
  67. Wurm, K. M., Stachniss, C., & Burgard, W. (2008). Coordinated multi-robot exploration using a segmentation of the environment. In Proceedings of the IEEE-RSJ international conference on intelligent robots and systems (IROS’08), Nice, France. Google Scholar
  68. Yamauchi, B. (1997). A frontier based approach for autonomous exploration. In Proceedings of the IEEE international symposium on computational intelligence in robotics and automation (CIRA’97), Monterey, CA, USA. Google Scholar
  69. Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In Proceedings of the international conference on autonomous agents, Minneapolis/Saint Paul, MN, USA. Google Scholar
  70. Zelinsky, A. (1992). A mobile robot exploration algorithm. IEEE Transactions on Robotics and Automation, 8(6), 707–717. CrossRefGoogle Scholar
  71. Zlot, R., Stentz, A., Dias, M. B., & Thayer, S. (2002). Multi-robot exploration controlled by a market economy. In Proceedings of the IEEE international conference on robotics and automation (ICRA’02), Washington, DC, USA. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Systems Engineering and Automation DepartmentMiguel Hernandez University of ElcheElche (Alicante)Spain

Personalised recommendations