Autonomous Robots

, Volume 32, Issue 1, pp 81–95 | Cite as

Distributed pursuit-evasion without mapping or global localization via local frontiers

  • Joseph W. Durham
  • Antonio Franchi
  • Francesco Bullo
Article

Abstract

This paper addresses a visibility-based pursuit-evasion problem in which a team of mobile robots with limited sensing and communication capabilities must coordinate to detect any evaders in an unknown, multiply-connected planar environment. Our distributed algorithm to guarantee evader detection is built around maintaining complete coverage of the frontier between cleared and contaminated regions while expanding the cleared region. We detail a novel distributed method for storing and updating this frontier without building a map of the environment or requiring global localization. We demonstrate the functionality of the algorithm through simulations in realistic environments and through hardware experiments. We also compare Monte Carlo results for our algorithm to the theoretical optimum area cleared as a function of the number of robots available.

Keywords

Pursuit-evasion Clearing Cooperative robotics Distributed algorithms Multi-robot coverage Surveillance Monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Video of a simple illustrative simulation where three robots clear an environment using the proposed distributed clearing algorithm (MPG 3.46 MB)

Video of a hardware experiment in which three robots execute the distributed clearing algorithm. The video includes explanatory captions (MPG 12.3 MB)

Video of a simulation where six robots clear a complex environment modeled off of section of a hospital (MPG 12.5 MB)

10514_2011_9260_MOESM4_ESM.mpg (4.6 mb)
Video of a simulation where 12 robots expand to clear as much space as possible in an infinite empty environment using the proposed distributed clearing algorithm (MPG 4.64 MB)

References

  1. Adler, M., Räcke, H., Sivadasan, N., Sohler, C., & Vöcking, B. (2003). Randomized pursuit-evasion in graphs. Combinatorics, Probability & Computing, 12(3), 225–244. CrossRefMATHGoogle Scholar
  2. Bopardikar, S. D., Bullo, F., & Hespanha, J. P. (2008). On discrete-time pursuit-evasion games with sensing limitations. IEEE Transactions on Robotics, 24(6), 1429–1439. CrossRefGoogle Scholar
  3. Censi, A. (2008). An ICP variant using a point-to-line metric. In 2008 IEEE int. conf. on robotics and automation, Pasadena, CA (pp. 19–25). CrossRefGoogle Scholar
  4. Durham, J. W., & Bullo, F. (2008). Smooth nearness-diagram navigation. In IEEE/RSJ int. conf. on intelligent robots and systems, Nice, France (pp. 690–695). Google Scholar
  5. Durham, J. W., Franchi, A., & Bullo, F. (2010). Distributed pursuit-evasion with limited-visibility sensor via frontier-based exploration. In 2010 IEEE int. conf. on robotics and automation, Anchorage, AK (pp. 3562–3568). CrossRefGoogle Scholar
  6. Franchi, A., & Stegagno, P. (2009). Multirobot Integrated Platform. http://www.dis.uniroma1.it/~labrob/software/MIP/.
  7. Franchi, A., Freda, L., Oriolo, G., & Vendittelli, M. (2009a). The sensor-based random graph method for cooperative robot exploration. IEEE/ASME Transactions on Mechatronics, 14(2), 163–175. CrossRefGoogle Scholar
  8. Franchi, A., Oriolo, G., & Stegagno, P. (2009b). Mutual localization in a multi-robot system with anonymous relative position measures. In IEEE/RSJ int. conf. on intelligent robots and systems, St. Louis, MO (pp. 3974–3980). Google Scholar
  9. Gerkey, B., et al. (2009). The Player/Stage Project. http://playerstage.sourceforge.net, version 2.13.
  10. Gerkey, B. P., Thrun, S., & Gordon, G. (2006). Visibility-based pursuit-evasion with limited field of view. The International Journal of Robotics Research, 25(4), 299–315. CrossRefGoogle Scholar
  11. Hollinger, G., Singh, S., & Kehagias, A. (2010). Improving efficiency of clearing with multi-agent teams. The International Journal of Robotics Research, 29(8), 1088–1105. CrossRefGoogle Scholar
  12. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self-deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126. CrossRefMATHGoogle Scholar
  13. Jung, B., & Sukhatme, G. S. (2002). Tracking targets using multiple robots: the effect of environment occlusion. Autonomous Robots, 13(3), 191–205. CrossRefMATHGoogle Scholar
  14. Kolling, A., & Carpin, S. (2008). Multi-robot surveillance: an improved algorithm for the graph-clear problem. In 2008 IEEE int. conf. on robotics and automation, Pasadena, CA (pp. 2360–2365). CrossRefGoogle Scholar
  15. Kolling, A., & Carpin, S. (2010). Multi-robot pursuit-evasion without maps. In 2010 IEEE int. conf. on robotics and automation, Anchorage, Alaska (pp. 3045–3051). CrossRefGoogle Scholar
  16. Parsons, T. D. (1978). Pursuit-evasion in a graph. In Y. Alavi & D. Lick (Eds.), Lecture notes in mathematics: Vol. 642. Theory and applications of graphs (pp. 426–441). Berlin: Springer. CrossRefGoogle Scholar
  17. Sachs, S., Rajko, S., & LaValle, S. M. (2004). Visibility-based pursuit-evasion in an unknown planar environment. The International Journal of Robotics Research, 23(1), 3–26. CrossRefGoogle Scholar
  18. Suzuki, I., & Yamashita, M. (1992). Searching for a mobile intruder in a polygonal region. SIAM Journal on Computing, 21(2), 863–888. CrossRefMATHMathSciNetGoogle Scholar
  19. Yamauchi, B. (1998). Frontier-based exploration using multiple robots. In 2nd int. conf. on autonomous agents, Minneapolis, MN (pp. 47–53). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joseph W. Durham
    • 1
  • Antonio Franchi
    • 2
  • Francesco Bullo
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Dept. Human Perception Cognition and ActionMax Planck Institute for Biological CyberneticsTübingenGermany

Personalised recommendations