Advertisement

Autonomous Robots

, 31:285 | Cite as

Color-accurate underwater imaging using perceptual adaptive illumination

  • Iuliu Vasilescu
  • Carrick Detweiler
  • Daniela Rus
Article

Abstract

Capturing color in water is challenging due to the heavy non-uniform attenuation of light in water across the visible spectrum, which results in dramatic hue shifts toward blue. Yet observing color in water is important for monitoring and surveillance as well as marine biology studies related to species identification, individual and group behavior, and ecosystem health and activity monitoring. Underwater robots are equipped with motor control for large scale transects but they lack sensors that enable capturing color-accurate underwater images. We present a method for color-accurate imaging in water called perceptual adaptive illumination. This method dynamically mixes the illumination of an object in a distance-dependent way using a controllable, multi-color light source. The color mix compensates correctly for color loss and results in an image whose color composition is equivalent to rendering the object in air. Experiments were conducted with a color palette in the pool and at three different coral reefs sites, and with an underwater robot collecting image data with the new sensor.

Keywords

Underwater imaging Accurate colors Adaptive illumination Color rendering index 

Supplementary material

(MP4 12.5 MB)

References

  1. Åhlén, J. (2005). Colour correction of underwater images using spectral data. PhD thesis, Uppsala Universitet. Google Scholar
  2. Bazeille, S., Quindu, I., Jaulin, L., & Malkasse, J. P. (2006). Automatic underwater image pre-processing. Sea Tech Week. Google Scholar
  3. Bellwood, D. (2011). The ‘lost’ language of fishes. http://www.coralcoe.org.au/news_stories/fishcolour.html.
  4. Chambah, M., Semani, D., Renouf, A., Courtellemont, P., & Rizzi, A. (2004). Underwater color constancy: enhancement of automatic live fish recognition. In Color imaging conference. Google Scholar
  5. Chen, M., He, Z., & Ao, F. (2008). Study and implementation for range-gated underwater laser imaging system. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference: Vol. 6625. Society of photo-optical instrumentation engineers (SPIE) conference series, March 2008. Google Scholar
  6. Commission internationale de l’éclairage (1931). Cie 1931 2 standard observer. Google Scholar
  7. Commission internationale de l’éclairage (1976). Supplement no. 2 to cie publication no. 15, colorimetry. Google Scholar
  8. Color correction filters (2011). http://www.urprofilters.com/.
  9. Crook, A. C. (1997). Colour patterns in a coral reef fish: Is background complexity important? Journal of Eperimental Marine Biology and Ecology, 217(2). doi: 10.1016/S0022-0981(97)00059-2.
  10. Edge, M. (2006). The underwater photographer, 3rd edn., Digital and traditional techniques (paperback). Waltham: Focal Press. Google Scholar
  11. Eustice, R. M. (2005). Large-area visually augmented navigation for autonomous underwater vehicles. PhD thesis, MIT. Google Scholar
  12. Eustice, R., Singh, H., Leonard, J., & Walter, M. (2006). Visually mapping the rms titanic: conservative covariance estimates for SLAM information filters. The International Journal of Robotics Research, 25(12), 1223–1242. CrossRefGoogle Scholar
  13. Jaffe, J., Moore, K., McLean, J., & Strand, M. (2007). Underwater optical imaging: status and prospects. Oceanography, 14. Google Scholar
  14. Land, E. H., & McCann, J. J. (1971). Lightness and Retinex Theory. Journal of the Optical Society of America, 61, 1 (1917–1983). CrossRefGoogle Scholar
  15. McLean, E. A., Burris, H. R. Jr., & Strand, M. P. (1995). Short-pulse range-gated optical imaging in turbid water. Applied Optics. Google Scholar
  16. Messmer, V., Jones, G. P., van Herwerden, L., & Munday, P. L. (2005). Genetic and ecological characterisation of colour dimorphism in a coral reef fish. Environmental Biology of Fishes, 74. doi: 10.1007/s10641-005-7430-8
  17. Narasimhan, S. G., & Nayar, S. K. (2005). Structured light methods for underwater imaging: light stripe scanning and photometric stereo. In OCEANS. Google Scholar
  18. Narasimhan, S. G., Nayar, S. K., Sun, B., & Koppal, S. J. (2005). Structured light in scattering media. In OCEANS. Google Scholar
  19. National Geographic (2010). Milestones in underwater photography. http://photography.nationalgeographic.com/photography/photos/milestones-underwater-photography.html.
  20. Osman, A., Iqbal, K., Salam, R. A., & Zawawi Talib, A. (2007). Underwater image enhancement using an integrated colour model. IAENG International Journal of Computer Science. Google Scholar
  21. Singh, H., Armstrong, R., Gilbes, F., Eustice, R., Roman, C., Pizarro, O., & Torres, J. (2004a). Imaging coral I: Imaging coral habitats with the SeaBED AUV. Subsurface Sensing Technologies and Applications, 5. doi: 10.1023/B:SSTA.0000018445.25977.f3
  22. Singh, H., Howland, J., & Pizarro, O. (2004b). Advances in large-area photomosaicking underwater. IEEE Journal of Oceanic Engineering, 29(3), 872–886. CrossRefGoogle Scholar
  23. Smith, R. C., & Baker, K. S. (1981). Optical properties of the clearest natural waters (200–800 nm). Applied Optics, 20, 177–184. CrossRefGoogle Scholar
  24. Stockman, A., MacLeod, D. I. A., & Johnson, N. E. (1993). Spectral sensitivities of human cones. Journal of the Optical Society of America, 10, 2491–2521. CrossRefGoogle Scholar
  25. Torres-Méndez, L. A., & Dudek, G. (2005). A statistical learning-based method for color correction of underwater images. Research on Computer Science, 17. Google Scholar
  26. Vasilescu, I., Detweiler, C., Doniec, M., Gurdan, D., Sosnowski, S., Stumpf, J., & Rus, D. (2010). Amour V: a hovering energy efficient underwater robot capable of dynamic payloads. The International Journal of Robotics Research, 29(5), 547–570. CrossRefGoogle Scholar
  27. Williams, S., Pizarro, O., How, M., Mercer, D., Powell, G., Marshall, J., & Hanlon, R. (2009). Surveying noctural cuttlefish camouflage behaviour using an AUV. In ICRA (pp. 214–219). Google Scholar
  28. Wyszecki, G. (1963). Proposal for a new color-difference formula. Journal of the Optical Society of America A, Online, 53, 1318–1319. CrossRefGoogle Scholar
  29. Yamashita, A., Fujii, M., & Kaneko, T. (2007). Color registration of underwater images for underwater sensing with consideration of light attenuation. In Robotics and automation, 2007 IEEE international conference on (pp. 4570–4575), April 2007. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Iuliu Vasilescu
    • 1
    • 2
  • Carrick Detweiler
    • 1
    • 3
  • Daniela Rus
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.TIA RESEARCHLas VegasUSA
  3. 3.University of Nebraska-LincolnLincolnUSA

Personalised recommendations