Advertisement

Autonomous Robots

, 31:183 | Cite as

Optimal self assembly of modular manipulators with active and passive modules

  • Seung-kook Yun
  • Daniela Rus
Article

Abstract

In this paper, we develop self-assembling robot systems composed of active modular robots and passive bars. The target structure is modeled as a dynamic graph. We present two provably correct algorithms for creating the structure. A decentralized optimal algorithm for the navigation of multiple modular robots on a partial truss structure is used to guide the robots to their location on the target structure. A decentralized algorithm for scheduling the transportation and placement of truss elements is used to coordinate the creation of the target structure. Both algorithms rely on locally optimal matching. The truss self-assembly algorithm has quadratic competitive ratio for static as well as dynamic graph representation. We show simulation results and results for experiments with two 3DOF robots and passive bars that can create and control a 6DOF manipulation.

Keywords

Self assembly Modular robot Distributed algorithm Bipartite matching Truss climbing robot Smart part 

Supplementary material

(AVI 5.58 MB)

(WMV 1.02 MB)

(MP4 7.94 MB)

References

  1. Almonacid, M., Saltarén, R. J., Aracil, R., & Reinoso, O. (2003). Motion planning of a climbing parallel robot. IEEE Transactions on Robotics and Automation, 19(3), 485–489. CrossRefGoogle Scholar
  2. Amano, H., Osuka, K., & Tarn, T. J. (2001). Development of vertically moving robot with gripping handrails for fire fighting. In Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems, Maui, HI, USA (pp. 661–667). Google Scholar
  3. Asadpour, M., Ashtiani, M., Sproewitz, A., & Ijspeert, A. (2009). Graph signature for self-reconfiguration planning of modules with symmetry. In IEEE/RSJ international conference on intelligent robots and systems, St. Louis, USA (pp. 5295–5300). Google Scholar
  4. Ayanian, N., White, P., Halasz, A., Yim, M., & Kumar, V. (2008). Stochastic control for self-assembly of xbots. In Proceedings of ASME international design engineering technical conferences & computers and information in engineering conference, New York, NY, USA. Google Scholar
  5. Butler, Z., & Rus, D. (2003). Distributed planning and control for modular robots with unit-compressible modules. The International Journal of Robotics Research, 22(9), 699–715. CrossRefGoogle Scholar
  6. Castano, A., Shen, W., & Will, P. (2000). CONRO: towards deployable robots with inter-robots metamorphic capabilities. Autonomous Robots, 8(3), 309–324. CrossRefGoogle Scholar
  7. Chiang, C. J., & Chirikjian, G. (2001). Modular robot motion planning using similarity metrics. Autonomous Robots, 10(1), 91–106. zbMATHCrossRefGoogle Scholar
  8. Chirikjian, G., Pamecha, A., & Ebert-Uphoff, I. (1996). Evaluating efficiency of self-reconfiguration in a class of modular robots. Journal of Robotic Systems, 13(5), 717–338. CrossRefGoogle Scholar
  9. Choi, H., Han, C., Lee, K., & Lee, S. (2005). Development of hybrid robot for construction works with pneumatic actuator. Automation in Construction, 14(4), 452–459. CrossRefGoogle Scholar
  10. Christensen, A.L., O’Grady, R., & Dorigo, M. (2008). Morphology control in a multirobot system. IEEE Robotics & Automation Magazine, 14(4), 18–25. CrossRefGoogle Scholar
  11. Detweiler, C., Vona, M., Yoon, Y., Yun, S., & Rus, D. (2007). Self-assembling mobile linkages. IEEE Robotics & Automation Magazine, 14(4), 45–55. CrossRefGoogle Scholar
  12. Duff, D., Yim, M., & Roufas, K. (2001). Evolution of polybot: a modular reconfigurable robot. In Proceedings of the harmonic drive international symposium, Nagano, Japan. Google Scholar
  13. Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM, 19(2), 248–264. zbMATHCrossRefGoogle Scholar
  14. Fahlman, S. (1973). A planning system for robot construction tasks (Tech. rep.). Massachusetts Institute of Technology, Cambridge, MA, USA. Google Scholar
  15. Fichter, E. (1986). A Stewart-platform based manipulator: general theory and practical construction. The International Journal of Robotics Research, 5(2), 157–182. CrossRefGoogle Scholar
  16. Gilbin, K., & Rus, D. (2010). Modular robot systems. IEEE Robotics & Automation Magazine, 17, 38–55. CrossRefGoogle Scholar
  17. Hamacher, H., & Tjandra, S. (2001). Mathematical modeling of evacuation problems: state of the art. Pedestrian and evacuation dynamics (Tech. rep.). Institut Techno- und Wirtschaftsmathematik. Google Scholar
  18. Hamlin, G., & Sanderson, A. (1997). Tetrobot: a modular approach to parallel robotics. IEEE Robotics & Automation Magazine, 4(1), 42–50. CrossRefGoogle Scholar
  19. Hou, F., Ranasinghe, N., Salemi, B., & Shen, W. M. (2008). Wheeled locomotion for payload carrying with modular robot. In IEEE/RSJ international conference on intelligent robots and systems, Nice, France (pp. 1331–1337). Google Scholar
  20. Jorgensen, M., Ostergaard, E., & Lund, H. (2004). Modular atron: Modules for a self-reconfigurable robot. In IEEE/RSJ international conference on intelligent robots and systems, Sendai, Japan (pp. 2068–2073). Google Scholar
  21. Kalayanasundaram, B., & Pruhs, K. (1993). Online weighted matching. Journal of Algorithms, 14(3), 478–488. MathSciNetCrossRefGoogle Scholar
  22. Kalyanasundaram, B., & Pruhs, K. (1995). The online transportation problem. In ESA ’95: proceedings of the third Annual European Symposium on Algorithms (pp. 484–493). London: Springer. Google Scholar
  23. Kasper Støy (2005). The ATRON self-reconfigurable robot: challenges and future directions. In Workshop on self-reconfigurable robotics at the robotics science and systems conference. Google Scholar
  24. Khuller, S., Mitchell, S., & Vazirani, V (1994). On-line algorithms for weighted bipartite matching and stable marriages. Theory and Computational Science, 127(2), 255–267. MathSciNetzbMATHCrossRefGoogle Scholar
  25. Klavins, E., Ghrist, R., & Lipsky, D. (2006). A grammatical approach to self-organizing robotic systems. IEEE Transactions on Automatic Control, 51(6), 949–962. MathSciNetCrossRefGoogle Scholar
  26. Kotay, K., & Rus, D. (2005). Efficient locomotion gait for a self-reconfiguring robot. In Proceedings of the IEEE international conference on robotics and automation, Barcelona, Spain (pp. 2963–2969). CrossRefGoogle Scholar
  27. Kotay, K., Rus, D., Vona, M., & McGray, C. (1998). The self-reconfiguring robotic molecule. In IEEE International Conference on Robotics and Automation, Leuven, Belgium (pp. 424–431). Google Scholar
  28. Kotay, K. D., & Rus, D. L. (1996). Navigating 3d steel web structures with an inchworm robot. In Proceedings of the IEEE international conference on intelligent robots and systems. Google Scholar
  29. Kuhn, H. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1–2), 83–97. MathSciNetCrossRefGoogle Scholar
  30. Kutzer, M., Moses, M., Brown, C., Armand, M., Scheidt, D., & Chirikjian, G. (2010). Design of a new independently-mobile reconfigurable modular robot. In International conference on robotics and automation, Anchorage, Alaska, USA (pp. 2758–2764). CrossRefGoogle Scholar
  31. Lee, S., Lee, K., Lee, S., Kim, J., & Han, C. (2007). Human-robot cooperation control for installing heavy construction materials. Autonomous Robots, 22(3), 305–319. zbMATHCrossRefGoogle Scholar
  32. Lyder, A., Garcia, R., & Støy, K. (2008). Mechanical design of Odin, an extendable heterogeneous deformable modular robot. In IEEE/RSJ international conference on intelligent robots and systems, Nice, France (pp. 883–888). Google Scholar
  33. Matthey, L., Berman, S., & Kumar, V. (2009). Stochastic strategies for a swarm robotic assembly system. In Proceedings of IEEE international conference on robotics and automation, Kobe, Japan (pp. 1953–1958). New York: IEEE Press. Google Scholar
  34. Meyerson, A., Nanavati, A., & Poplawski, L. (2006). Randomized online algorithms for minimum metric bipartite matching. In ACM-SIAM symposium on discrete algorithms, Miami, Florida, USA (pp. 954–959). CrossRefGoogle Scholar
  35. Moses, M., Yamaguchi, H., & Chirikjian, G. (2009). Towards cyclic fabrication systems for modular robotics. In Proceedings of robotics: science and systems, Seattle, USA. Google Scholar
  36. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., & Kokaji, S. (1998). A 3-d self-reconfigurable structure. In Proceedings of the 1998 IEEE international conference on robotics and automation, Leuven, Belgium (pp. 432–439). Google Scholar
  37. Murata, S., Kakomura, K., & Kurokawa, H. (2008). Toward a scalable modular robotic system. IEEE Robotics & Automation Magazine, 14(4), 56–63. CrossRefGoogle Scholar
  38. Nechyba, M., & Xu, Y. (1995). Human-robot cooperation in space: SM2 for new space station structure. IEEE Robotics & Automation Magazine, 2(4), 4–11. CrossRefGoogle Scholar
  39. Pamecha, A., Chiang, C., Stein, D., & Chirikjian, G. (1996). Design and implementation of metamorphic robots. In The 1996 ASME design engineering technical conference and computers in engineering conference, Irvine, CA. Google Scholar
  40. Pamecha, A., Ebert-Uphoff, I., & Chirikjian, G. (1997). A useful metric for modular robot motion planning. IEEE Transactions on Robotics and Automation, 13(4), 531–545. CrossRefGoogle Scholar
  41. Park, M., Chitta, S., Teichman, A., & Yim, M. (2008). Automatic configuration methods in modular robots. International Journal of Robotics Research, 27(3–4), 403–421. Google Scholar
  42. Parker, C., Zhang, H., & Kube, R. (2003). Blind bulldozing: multiple robot nest construction. In IEEE/RSJ international conference on intelligent robots and systems, Las Vegas, Nevada, USA (pp. 2010–2015). Google Scholar
  43. Phillips, J., & Agarwal, P. (2006). On bipartite matching under the rms distance. In 18th Canadian conference on computational geometry, Kingston, Ontario. Google Scholar
  44. Ripin, Z., Soon, T., Abdullah, A., & Samad, Z. (2000). Development of a low-cost modular pole climbing robot. In TENCON 2000. Proceedings, Kula Lumpur, Malaysia (Vol. 1, pp. 196–200). Google Scholar
  45. Rus, D., & Vona, M. (2001). Crystalline robots: Self-reconfiguration with compressible unit modules. Autonomous Robots, 10(1), 107–124. zbMATHCrossRefGoogle Scholar
  46. Salemi, B., Moll, M., & Shen, W. M. (2006). SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In IEEE/RSJ international conference on intelligent robots and systems, Beijing, China (pp. 3636–3641). CrossRefGoogle Scholar
  47. Schultz, U., Christensen, D., & Stoy, K. (2007). A domain-specific language for programming self-reconfigurable robots. In GPCE’07 workshop on automatic program generation for embedded systems, Salzburg, Austria (pp. 28–60). Google Scholar
  48. Skaff, S., Staritz, P., & Whittaker, W. (2001). Skyworker: Robotics for space assembly, inspection and maintenance. In Proceedings of the thirteenth space studies institute conference on space manufacturing (pp. 104–108). Google Scholar
  49. Sproewitz, A., Billard, A., Dillenbourg, P., & Ijspeert, A. J. (2009). Roombots-Mechanical design of Self-Reconfiguring modular robots for adaptive furniture. In 2009 IEEE international conference on robotics and automation, Kobe, Japan (pp. 4259–4264). CrossRefGoogle Scholar
  50. Stroupe, A., Huntsberger, T., Okon, A., Aghazarian, H., & Robinson, M. (2005). Behavior-based multi-robot collaboration for autonomous construction tasks. In IEEE/RSJ international conference on intelligent robots and systems, Alberta, Canada (pp. 1495–1500). CrossRefGoogle Scholar
  51. Unsal, C., Kiliccote, H., & Khosla, P. (2001). A modular self-reconfigurable bipartite robotic system: implementation and motion planning. Autonomous Robots, 10(1), 23–40. CrossRefGoogle Scholar
  52. Vaidya, P. (1988). Geometry helps in matching. In STOC ’88: proceedings of the twentieth annual ACM symposium on theory of computing, Chicago, IL, United States (pp. 422–425). CrossRefGoogle Scholar
  53. Werfel, J. (2001). Anthills built to order: automating construction with artificial swarms. Master’s thesis, Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA. Google Scholar
  54. Werfel, J., & Nagpal, R. (2008). Three-dimensional construction with mobile robots and modular blocks. The International Journal of Robotics Research, 3–4(27), 463–479. CrossRefGoogle Scholar
  55. White, P. J., Thorne, C. E., & Yim, M. (2009). Right Angle Tetrahedron Chain Externally-actuated Testbed (RATCHET): a shape changing system. In International design engineering technical conferences & computers and information in engineering conference, San Diego, CA, USA. Google Scholar
  56. Williams, R., & Mayhew, J. (1997). Cartesian control of VGT manipulators applied to DOE hardware. In Proceedings of the fifth national conference on applied mechanisms and robotics, Cincinnati, OH. Google Scholar
  57. Yamada, H., & Muto, T. (2007). Construction tele-robotic system with virtual reality (cg presentation of virtual robot and task object using stereo vision system). Control and Intelligent Systems, 35(3), 195–201. zbMATHCrossRefGoogle Scholar
  58. Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirickjian, G. (2007). Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine, 14(1), 43–52. CrossRefGoogle Scholar
  59. Yoon, Y. (2006). Modular robots for making and climbing 3-d trusses. Master’s thesis, Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA. Google Scholar
  60. Yun, S., & Rus, D. (2007). Optimal distributed planning of multi-robot placement on a 3d truss. In IEEE/RSJ international conference on intelligent robots and systems, San Diego, CA, USA (pp. 1365–1370). CrossRefGoogle Scholar
  61. Yun, S., & Rus, D. (2008). Self assembly of modular manipulators with active and passive modules. In Proc. of IEEE/RSJ IEEE international conference on robotics and automation, Pasadena, CA (pp. 1477–1482) (to appear). Google Scholar
  62. Yun, S., Hjelle, D., Lipson, H., & Rus, D. (2009). Planning the reconfiguration of grounded truss structures with truss climbing robots that carry truss elements. In IEEE/RSJ IEEE international conference on robotics and automation, Kobe, Japan (pp. 1327–1333). Google Scholar
  63. Zhao, D., Xia, Y., Yamada, H., & Muto, T. (2003). Control method for realistic motions in a construction tele-robotic system with a 3-dof parallel mechanism. Journal of Robotics and Mechatronics, 15(4), 361–368. Google Scholar
  64. Zykov, V., Mytilinaios, E., Desnoyer, M., & Lipson, H. (2007). Evolved and designed self-reproducing modular robotics. IEEE Transactions on Robotics, 23(2), 308–319. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.MIT Computer Science and Artificial Intelligence LabCambridgeUSA

Personalised recommendations