Autonomous Robots

, 31:55 | Cite as

MACCEPA 2.0: compliant actuator used for energy efficient hopping robot Chobino1D

  • Bram Vanderborght
  • Nikos G. Tsagarakis
  • Ronald Van Ham
  • Ivar Thorson
  • Darwin G. Caldwell
Article

Abstract

The MACCEPA (Mechanically Adjustable Compliance and Controllable Equilibrium Position Actuator) is an electric actuator of which the compliance and equilibrium position are fully independently controllable and both are set by two dedicated servomotor. In this paper an improvement of the actuator is proposed where the torque-angle curve and consequently the stiffness-angle curve can be modified by choosing an appropriate shape of a profile disk, which replaces the lever arm of the original design. The actuator has a large joint angle, torque and stiffness range and these properties can be made beneficial for safe human robot interaction and the construction of energy efficient walking, hopping and running robots. The benefit of the ability to store and release energy is shown by the 1DOF hopping robot Chobino1D. The achieved hopping height is much higher compared to a configuration in which the same motor is used without a series elastic element. The stiffness of the actuator increases with deflection, more closely resembling the properties shown by elastic tissue in humans.

Keywords

Adaptable compliant actuation Energy efficiency Hopping robot 

References

  1. Albu-Schaeffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimboeck, T., Wolf, S., & Hirzinger, G. (2008). Soft robotics: from torque feedback controlled lightweight robots to intrinsically compliant systems. IEEE Robotics & Automation Magazine, 15(3), 20–30. CrossRefGoogle Scholar
  2. Alexander, R. M. (1992). Exploring biomechanics: animals in motion. New York: Scientific American Library. Google Scholar
  3. Bicchi, A., & Tonietti, G. (2004). Fast and soft arm tactics: dealing with the safety-performance trade-off in robot arms design and control. IEEE Robotics & Automation Magazine, 11(2), 22–33. CrossRefGoogle Scholar
  4. Hosoda, K., Takuma, T., Nakamoto, A., & Hayashi, S. (2007). Biped robot design powered by antagonistic pneumatic actuators for multi-modal locomotion. Robotics and Autonomous Systems, 56(1), 46–53. CrossRefGoogle Scholar
  5. Hurst, J. W., & Rizzi, A. A. (2008). Series compliance for robot actuation: application on the electric cable differential leg. IEEE Robotics & Automation Magazine, 15(3), 2008. CrossRefGoogle Scholar
  6. Jafari, A., Tsagarakis, N., Vanderborght, B., & Caldwell, D. (2010). A novel actuator with adjustable stiffness (AwAS). In IEEE/RSJ international conference on intelligent robots and systems (IROS 2010) (pp. 4201–4206). New York: IEEE Press. CrossRefGoogle Scholar
  7. Kajita, S., Nagasaki, T., Yokoi, K., Kaneko, K., & Tanie, K. (2002). Running pattern generation for a humanoid robot. In IEEE international conference on robotics and automation (ICRA 2002) (Vol. 3, pp. 2755–2761). Google Scholar
  8. Kajita, S., Nagasaki, T., Kaneko, K., Yokoi, K., & Tanie, K. (2005). A Running Controller of Humanoid Biped HRP-2LR. In IEEE international conference on robotics and automation (ICRA) (pp. 616–622). Google Scholar
  9. Playter, R., & Raibert, M. (1992). Control of a biped somersault in 3D. In IEEE/RSJ international conference on intelligent robots and systems (IROS 1992) (pp. 582–589), Raleigh, NC, USA. CrossRefGoogle Scholar
  10. Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators. In IEEE international workshop on intelligent robots and systems (IROS 1995) (pp. 399–406), Pittsburg, USA. Google Scholar
  11. Raibert, M., & Brown, H. J. (1984). Experiments in balance with a 2D one-legged hopping machine. Journal of Dynamic Systems, Measurement, and Control, 106, 75–81. CrossRefGoogle Scholar
  12. Raibert, M., Brown, H. J., & Chepponis, M. (1984). Experiments in balance with a 3D one-legged hopping machine. The International Journal of Robotics Research, 3(2), 75–92. CrossRefGoogle Scholar
  13. Seyfarth, A., Geyer, H., Blickhan, R., Lipfert, S., Rummel, J., Minekawa, Y., & Iida, F. (2006). Running and walking with compliant legs. In Fast motions in biomechanics and robotics (Vol. 340, pp. 383–401). CrossRefGoogle Scholar
  14. Sugar, T. (2002). A novel selective compliant actuator. Mechatronics, 12(9), 1157–1171. CrossRefGoogle Scholar
  15. Sulzer, J., Peshkin, M., & Patton, J. (2005). MARIONET: an exotendon-driven, rotary series elastic actuator for exerting joint torque. In International conference on robotics for rehabilitation (ICORR) (pp. 103–108). CrossRefGoogle Scholar
  16. Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., & Lefeber, D. (2007). MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robotics and Autonomous Systems, 55(10), 761–768. CrossRefGoogle Scholar
  17. Van Ham, R., Thomas, S., Vanderborght, B., Hollander, K., & Lefeber, D. (2009). Compliant actuator designs: review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robotics & Automation Magazine, 16(3), 81–94. CrossRefGoogle Scholar
  18. Vanderborght, B., Sugar, T., Van Ham, R., Hollander, K., & Lefeber, D. (2008). Comparison of mechanical design and energy consumption of adaptable passive compliant actuators. The International Journal of Robotics Research, 28(1), 90–103. CrossRefGoogle Scholar
  19. Vanderborght, B., Van Ham, R., Verrelst, B., Van Damme, M., & Lefeber, D. (2008). Overview of the lucy project: dynamic stabilization of a biped powered by pneumatic artificial muscles. Advanced Robotics, 22(25), 1027–1051. CrossRefGoogle Scholar
  20. Vanderborght, B., Verrelst, B., Van Ham, R., Van Damme, M., Beyl, P., & Lefeber, D. (2008). Development of a compliance controller to reduce energy consumption for bipedal robots. Autonomous Robots, 24(4), 419–434. CrossRefGoogle Scholar
  21. Versluys, R., Desomer, A., Lenaerts, G., Pareit, O., Vanderborght, B., Perre, G., Peeraer, L., & Lefeber, D. (2008). A biomechatronical transtibial prosthesis powered by pleated pneumatic artificial muscles. International Journal of Modelling, Identification and Control, 4(4), 394–405. CrossRefGoogle Scholar
  22. Visser, L., Carloni, R., & Stramigioli, S. (2010). Variable stiffness actuators: a port-based analysis and a comparison of energy efficiency. In 2010 IEEE international conference on robotics and automation (ICRA). IEEE Robotics and Automation Society Press, pp. 3279–3284. Available: http://doc.utwente.nl/72401/
  23. Wolf, S., & Hirzinger, G. (2008). A new variable stiffness design: matching requirements of the next robot generation. In IEEE international conference on robotics and automation (ICRA) (pp. 1741–1746). CrossRefGoogle Scholar
  24. Zinn, M., Khatib, O., Roth, B., & Salisbury, J. (2004). Playing it safe [human-friendly robots]. IEEE Robotics & Automation Magazine, 11(2), 12–21. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bram Vanderborght
    • 1
    • 2
  • Nikos G. Tsagarakis
    • 2
  • Ronald Van Ham
    • 1
  • Ivar Thorson
    • 2
  • Darwin G. Caldwell
    • 2
  1. 1.Robotics & Multibody Mechanics Research GroupVrije Universiteit BrusselBrusselBelgium
  2. 2.Robotics, Brain and Cognitive Sciences DepartmentItalian Institute of TechnologyGenoaItaly

Personalised recommendations