Advertisement

Autonomous Robots

, 30:399 | Cite as

Universally manipulable body models—dual quaternion representations in layered and dynamic MMCs

  • Malte Schilling
Article

Abstract

Surprisingly complex tasks can be solved using a behaviour-based, reactive control system, i.e., a system that operates without an explicit internal representation of the environment and the own body. Nevertheless, application of internal representations has gained interest in recent years because such internal representations can be used to solve problems of perception and motor control (sensor fusion, inverse modeling) and may in addition be applied to higher cognitive functions as are the ability to plan ahead. To endow such a system with the ability to find new behavioural solutions to a given problem in a broad range of possibilities, the internal representation must be universally manipulable, i.e. the model should be able to simulate all movements that are physically possible for the body given. Using recurrent neural networks, models showing this faculty have been proposed being based on the principle of mean of multiple computation (MMC). The extension of this approach to three dimensions requires the introduction of a joint angle representation which allows for computation of mean values. Here we use dual quaternions that are singularity-free and unambiguous which allow for shortest path interpolation. In addition, it has been shown that dual quaternions are the most efficient and most compact form for representing rigid transformations. The model can easily be adapted to bodies of arbitrary geometries. The extended MMC net introduced in this article represents a holistic system that can—following the principle of pattern completion—likewise be used as an inverse model, a forward model, for sensor fusion or other, related capabilities.

Keywords

Embodiment Internal model Mental simulation Recurrent neural network Dual quaternions 

Supplementary material

10514_2011_9226_MOESM1_ESM.pdf (275 kb)
(PDF 275 KB)

References

  1. Acosta-Calderon, C., & Hu, H. (2005). Robot imitation: Body schema and body percept. Journal of Applied Bionics and Biomechanics, 2(3–4), 131–148. CrossRefGoogle Scholar
  2. Aspragathos, N. A., & Dimitros, J. K. (1998). A comparative study of three methods for robot kinematics. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 28(2), 135–145. CrossRefGoogle Scholar
  3. Atkeson, C. G., & Hollerbach, J. M. (1985). Kinematic features of unrestrained vertical arm movements. Journal of Neurosciences, 5(9), 2318–2330. Google Scholar
  4. Bernstein, N. A. (1967). The co-ordination and regulation of movements. Oxford: Pergamon Press Ltd. Google Scholar
  5. Biess, A., Liebermann, D. G., & Flash, T. (2007). A computational model for redundant human three-dimensional pointing movements: Integration of independent spatial and temporal motor plans simplifies movement dynamics. Journal of Neurosciences, 27(48), 13,045–13,064. Google Scholar
  6. Blanke, O., Landis, T., Spinelli, L., & Seeck, M. (2004). Out-of-body experience and autoscopy of neurological origin. Brain, 127(2), 243–258. CrossRefGoogle Scholar
  7. Blanke, O., Mohr, C., Michel, C. M., Pascual-Leone, A., Brugger, P., Seeck, M., Landis, T., & Thut, G. (2005). Linking out-of-body experience and self processing to mental own-body imagery at the temporoparietal junction. Journal of Neurosciences, 25(3), 550–557. Google Scholar
  8. Bläsing, B. (2006). Crossing large gaps: A simulation study of stick insect behaviour. Adaptive Behaviour, 14(3), 265–285. CrossRefGoogle Scholar
  9. Bläsing, B., & Cruse, H. (2004). Stick insect locomotion in a complex environment: Climbing over large gaps. The Journal of Experimental Biology, 207, 1273–1286. CrossRefGoogle Scholar
  10. Blohm, G., & Crawford, J. D. (2007). Computations for geometrically accurate visually guided reaching in 3-D space. Journal of Vision, 7(5), 1–22. CrossRefGoogle Scholar
  11. Bockemühl, T., Troje, N., & Dürr, V. (2010). Inter-joint coupling and joint angle synergies of human catching movements. Human Movement Science, 29(1), 73–93. CrossRefGoogle Scholar
  12. Bottema, O., & Roth, B. (1979). Theoretical kinematics. Amsterdam: North-Holland. MATHGoogle Scholar
  13. Botvinick, M., & Cohen, J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature, 391(6669), 756–756. CrossRefGoogle Scholar
  14. Brooks, R. A. (1991a). Intelligence without reason. In J. Myopoulos & R. Reiter (Eds.), Proceedings of the 12th international joint conference on artificial intelligence (IJCAI-91) (pp. 569–595). San Mateo: Morgan Kaufmann. Google Scholar
  15. Brooks, R. A. (1991b). Intelligence without representation. Artificial Intelligence, 47, 139–159. CrossRefGoogle Scholar
  16. Chasles, M. (1830). Note sur les propriétés générales du système de deux corps semblables entr’eux et placés d’une manière quelconque dans l’espace; et sur le déplacement fini ou infiniment petit d’un corps solide libre. Bulletin des Sciences Mathematiques, Astronomiques, Physiques et Chimiques, 14(321–326). Google Scholar
  17. Clifford, W. (1882). Mathematical papers. London: Macmillan. Google Scholar
  18. Cothros, N., Wong, J. D., & Gribble, P. L. (2006). Are there distinct neural representations of object and limb dynamics? Experimental Brain Research, 173(4), 689–697. CrossRefGoogle Scholar
  19. Cruse, H. (1979). The control of the anterior extreme position of the hindleg of a walking insect. Physiological Entomology, 4, 121–124. CrossRefGoogle Scholar
  20. Cruse, H. (1986). Constraints for joint angle control of the human arm. Biological Cybernetics, 54, 125–132. CrossRefGoogle Scholar
  21. Cruse, H. (1999). Feeling our body—the basis of cognition? Evolution and Cognition, 5(2), 162–173. Google Scholar
  22. Cruse, H. (2003). The evolution of cognition: A hypothesis. Cognitive Science, 27(1), 135–155. MathSciNetGoogle Scholar
  23. Cruse, H., & Brüwer, M. (1987). The human arm as a redundant manipulator: The control of path and joint angles. Biological Cybernetics, 57(1–2), 137–144. CrossRefGoogle Scholar
  24. Cruse, H., & Hübner, D. (2008). Selforganizing memory: Active learning of landmarks used for navigation. Biological Cybernetics, 99(3), 219–236. CrossRefMATHGoogle Scholar
  25. Cruse, H., & Steinkühler, U. (1993). Solution of the direct and inverse kinematic problems by a common algorithm based on the mean of multiple computations. Biological Cybernetics, 69, 345–351. CrossRefGoogle Scholar
  26. Daniilidis, K. (1999). Hand-eye calibration using dual quaternions. International Journal of Robotics Research, 18, 286–298. CrossRefGoogle Scholar
  27. Davidson, P. R., & Wolpert, D. M. (2004). Internal models underlying grasp can be additively combined. Experimental Brain Research, 155(3), 334–340. CrossRefGoogle Scholar
  28. de Vignemont, F. (2010). Body schema and body image–pros and cons. Neuropsychologia, 48(3), 669–680. CrossRefGoogle Scholar
  29. Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4(11), 423–431. CrossRefGoogle Scholar
  30. Flash, T., & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neurosciences, 5(7), 1688–1703. Google Scholar
  31. Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F. (1996). Computer graphics: Principles and practice in C (2nd ed.). Upper Saddle River: Pearson. MATHGoogle Scholar
  32. Frith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London: Biological Sciences, 355, 1771–1788. CrossRefGoogle Scholar
  33. Funda, J., & Paul, R. (1990). A computational analysis of screw transformations in robotics. IEEE Transactions on Robotics and Automation, 6(3), 348–356. CrossRefGoogle Scholar
  34. Ghahramani, Z., & Wolpert, D. M. (1997). Modular decomposition in visuomotor learning. Nature, 386(6623), 392–395. CrossRefGoogle Scholar
  35. Glenberg, A. M. (1997). What memory is for. Behavioural and Brain Sciences, 20(1). Google Scholar
  36. Govindu, V. M. (2004). Lie-algebraic averaging for globally consistent motion estimation. In Computer vision and pattern recognition, IEEE computer society conference on (Vol. 1, pp. 684–691). Google Scholar
  37. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioural and Brain Sciences, 27, 377–442. Google Scholar
  38. Hamilton, W. (1844). On quaternions. In Proceedings of the Royal Irish Academy. Google Scholar
  39. Hamilton, W. (1866). Elements of quaternions. London: Longmans Green. New York: Chelsea, 1969. Google Scholar
  40. Hanson, A. J. (2005). The Morgan Kaufmann series in interactive 3D technology, Visualizing quaternions. San Mateo: Morgan Kaufmann. Google Scholar
  41. Harnad, S. (1990). The symbol grounding problem. Physica D, 42, 335–346. CrossRefGoogle Scholar
  42. Hartmann, G., & Wehner, R. (1995). The ant’s path integration system: A neural architecture. Biological Cybernetics, 73(6), 483–497. MATHGoogle Scholar
  43. Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences, 6(6), 242–247. CrossRefGoogle Scholar
  44. Hoffmann, M., Marques, H., Arieta, A. H., Sumioka, H., Lungarella, M., & Pfeifer, R. (2010). Body schema in robotics: A review. IEEE Transactions on Autonomous Mental Development, 2(4), 304–324. CrossRefGoogle Scholar
  45. Honegger, H. W. (1981). A preliminary note on a new optomotor response in crickets: Antennal tracking of moving targets. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioural Physiology, 142(3), 419–421. CrossRefGoogle Scholar
  46. Imamizu, H., & Kawato, M. (2008). Neural correlates of predictive and postdictive switching mechanisms for internal models. Journal of Neurosciences, 28(42), 10,751–10,765. Google Scholar
  47. Jeannerod, M. (1999). To act or not to act: Perspectives on the representation of actions. Quarterly Journal of Experimental Psychology, 52A, 1–29. CrossRefGoogle Scholar
  48. Kavan, L., & Žára, J. (2005). Spherical blend skinning: A real-time deformation of articulated models. In I3D ’05: Proceedings of the 2005 symposium on interactive 3D graphics and games (pp. 9–16). New York: ACM. CrossRefGoogle Scholar
  49. Kavan, L., Collins, S., O’Sullivan, C., & Žára, J. (2006). Dual quaternions for rigid transformation blending (Technical report TCD-CS-2006-46). Trinity College Dublin. Google Scholar
  50. Kavan, L., Collins, S., Žára, J., & O’Sullivan, C. (2007). Skinning with dual quaternions. In 2007 ACM SIGGRAPH symposium on interactive 3D graphics and games (pp. 39–46). New York: ACM Press. Google Scholar
  51. Kavan, L., Collins, S., Žára, J., & O’Sullivan, C. (2008). Geometric skinning with approximate dual quaternion blending. ACM Transactions on Graphics, 27(4), 105. CrossRefGoogle Scholar
  52. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727. CrossRefGoogle Scholar
  53. Kawato, M., & Gomi, H. (1992). The cerebellum and VOR/OKR learning models. Trends in Neurosciences, 15(11), 445–453. CrossRefGoogle Scholar
  54. Kindermann, T., & Cruse, H. (2002). MMC—a new numerical approach to the kinematics of complex manipulators. Mechanism and Machine Theory, 37(4), 375–394. CrossRefMATHGoogle Scholar
  55. Klein Breteler, M., & Meulenbroek, R. (2006). Modeling 3D object manipulation: Synchronous single-axis joint rotations? Experimental Brain Research, 168(3), 395–409. CrossRefGoogle Scholar
  56. Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2(11), 1026–1031. CrossRefGoogle Scholar
  57. Luenberger, D. G. (1984). Linear and nonlinear programming. Reading: Addison-Wesley. MATHGoogle Scholar
  58. Makarov, V., Song, Y., Velarde, M., Hübner, D., & Cruse, H. (2008). Elements for a general memory structure: Properties of recurrent neural networks used to form situation models. Biological Cybernetics, 98(5), 371–395. CrossRefMATHMathSciNetGoogle Scholar
  59. Makin, T. R., Holmes, N. P., & Ehrsson, H. H. (2008). On the other hand: Dummy hands and peripersonal space. Behavioural Brain Research, 191(1), 1–10. CrossRefGoogle Scholar
  60. Mataric, M. J. (1999). Behaviour-based robotics. In R. A. Wilson & F. C. Keil (Eds.), MIT encyclopedia of cognitive sciences (pp. 74–77). Cambridge: MIT Press. Google Scholar
  61. Mataric, M. J. (2002). Situated robotics. In Encyclopedia of cognitive science. London: Nature Publishing Group, Macmillan Reference Limited. Google Scholar
  62. Matheson, T., & Dürr, V. (2003). Load compensation in targeted limb movements of an insect. Journal of Experimental Biology, 206, 3175–3186. CrossRefGoogle Scholar
  63. Maxwell, E. A. (1951). General homogeneous coordinates in space of three dimensions. Cambridge: Cambridge University Press. MATHGoogle Scholar
  64. McCarthy, J. (1990). Introduction to theoretical kinematics. Cambridge: MIT Press. Google Scholar
  65. McFarland, D., & Bösser, T. (1993). Intelligent behaviour in animals and robots. Cambridge: MIT Press. Google Scholar
  66. Metzinger, T. (2006). Different conceptions of embodiment. Psyche, 12(4). Google Scholar
  67. Miall, R., Weir, D., Wolpert, D., & Stein, J. (1993). Is the cerebellum a Smith predictor? Journal of Motor Behaviour, 25(3), 203–216. CrossRefGoogle Scholar
  68. Morasso, P. (1981). Spatial control of arm movements. Experimental Brain Research, 42(2), 223–227. CrossRefGoogle Scholar
  69. Morasso, P., & Sanguineti, V. (1994). Self-organizing topographic maps and motor planning. In SAB94: Proceedings of the third international conference on simulation of adaptive behaviour: from animals to animats (Vol. 3, pp. 214–220). Cambridge: MIT Press. Google Scholar
  70. Muller, C. M. P., Brenner, E., & Smeets, J. B. J. (2009). Maybe they are all circles: Clues and cues. Journal of Vision, 9(9), 10.1-5. doi: 10.1167/9.9.10. CrossRefGoogle Scholar
  71. Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC. MATHGoogle Scholar
  72. Mussa-Ivaldi, F., Morasso, P., & Zaccaria, R. (1988). Kinematic networks distributed model for representing and regularizing motor redundancy. Biological Cybernetics, 60(1), 1–16. Google Scholar
  73. Niven, J. E., Buckingham, C. J., Lumley, S., Cuttle, M. F., & Laughlin, S. B. (2009). Visual targeting of forelimbs in ladder-walking locusts. Current Biology, 20(1), 86–91. CrossRefGoogle Scholar
  74. Page, K. L., Zakotnik, J., Durr, V., & Matheson, T. (2008). Motor control of aimed limb movements in an insect. Journal of Neurophysiology, 99(2), 484–499. CrossRefGoogle Scholar
  75. Pfeifer, R., & Scheier, C. (2001). Understanding intelligence. Cambridge: MIT Press. Google Scholar
  76. Rosenbaum, D. A., Engelbrecht, S., Bushe, M., & Loukopoulos, L. (1993). Knowledge model for selecting and producing reaching movements. Journal of Motor Behaviour, 25, 217–227. CrossRefGoogle Scholar
  77. Rosenbaum, D. A., Loukopoulos, L., Meulenbroek, R., Vaughan, J., & Engelbrecht, S. (1995). Planning reaches by evaluating stored postures. Psychological Review, 102, 28–67. CrossRefGoogle Scholar
  78. Rosenbaum, D. A., Meulenbroek, R. J., Vaughan, J., & Jansen, C. (2001). Posture-based motion planning: applications to grasping. Psychological Review, 108(4), 709–734. CrossRefGoogle Scholar
  79. Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition: Foundations (parallel distributed processing). Cambridge: MIT Press. Google Scholar
  80. Schilling, M. (2009). Dynamic equations in MMC networks: Construction of a dynamic body model. In Proc. of the 12th international conference on climbing and walking robots and the support technologies for mobile machines (CLAWAR). Google Scholar
  81. Schilling, M., & Cruse, H. (2007). Hierarchical MMC networks as a manipulable body model. In Proceedings of the international joint conference on neural networks (IJCNN 2007), Orlando, FL (pp. 2141–2146). CrossRefGoogle Scholar
  82. Schilling, M., & Cruse, H. (2008). The evolution of cognition—from first order to second order embodiment. In I. Wachsmuth & G. Knoblich (Eds.), Modeling communication with robots and virtual humans. Berlin: Springer. Google Scholar
  83. Schmitz, J., Schneider, A., Schilling, M., & Cruse, H. (2008). No need for a body model: Positive velocity feedback for the control of an 18-dof robot walker. Applied Bionics and Biomechanics, Special Issue on Biologically Inspired Robots, 5(3), 135–147. CrossRefGoogle Scholar
  84. Shadmehr, R., & Mussa-Ivaldi, F. (1994). Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 14, 3208–3224. Google Scholar
  85. Shaw, B. (1903). Man and superman: A comedy and a philosophy. London. Google Scholar
  86. Shoemake, K. (1985). Animating rotation with quaternion curves. In SIGGRAPH ’85: Proceedings of the 12th annual conference on computer graphics and interactive techniques (pp. 245–254). New York: ACM Press. CrossRefGoogle Scholar
  87. Smeets, J. B. J., van den Dobbelsteen, J. J., de Grave, D. D. J., van Beers, R. J., & Brenner, E. (2006). Sensory integration does not lead to sensory calibration. Proceedings of the National Academy of Sciences of the United States of America, 103(49), 18,781–18,786. doi: 10.1073/pnas.0607687103. CrossRefGoogle Scholar
  88. Soechting, J., Buneo, C., Herrmann, U., & Flanders, M. (1995). Moving effortlessly in three dimensions: Does Donders’ law apply to arm movement? Journal of Neurosciences, 15(9), 6271–6280. Google Scholar
  89. Steels, L. (2003). Intelligence with representation. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 361(1811), 2381–2395. CrossRefMathSciNetGoogle Scholar
  90. Steinkühler, U. (1994). Mmc-modelle zur lösung kinematischer aufgabenstellungen eines redundanten manipulators. Ph.D. thesis, University of Bielefeld. Google Scholar
  91. Steinkühler, U., & Cruse, H. (1998). A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biological Cybernetics, 79(6), 457–466. CrossRefGoogle Scholar
  92. Strauss, R., & Pichler, J. (1998). Persistence of orientation toward a temporarily invisible landmark in drosophila melanogaster. Journal of Comparative Physiology A, 182, 411–423. CrossRefGoogle Scholar
  93. Stringer, S., & Rolls, E. (2007). Hierarchical dynamical models of motor function. Neurocomputing, 70, 975–990. Google Scholar
  94. Uno, Y., Kawato, M., & Suzuki, R. (1989). Formation and control of optimal trajectory in human multijoint arm movement. Biological Cybernetics, 61(2), 89–101. CrossRefGoogle Scholar
  95. van Beers, R., Wolpert, D., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Current Biology, 12, 834–837. CrossRefGoogle Scholar
  96. Wang, L. C. T., & Chen, C. C. (1991). A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. IEEE Transactions on Robotics and Automation, 7(4), 489–499. CrossRefGoogle Scholar
  97. Wang, X. (1999). Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements. Biological Cybernetics, 80(6), 449–463. CrossRefGoogle Scholar
  98. Webb, B. (2004). Neural mechanisms for prediction: Do insects have forward models? Trends in Neurosciences, 27(5), 278–282. CrossRefGoogle Scholar
  99. Whitney, D. E. (1969). Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on Man-Machine Systems, 10, 47–53. CrossRefGoogle Scholar
  100. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636. CrossRefGoogle Scholar
  101. Wolpert, D., Ghahramani, Z., & Jordan, M. (1995). An internal model for sensorimotor integration. Science, 269, 1880–1882. CrossRefGoogle Scholar
  102. Wolpert, D., Miall, R., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347. CrossRefGoogle Scholar
  103. Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329. CrossRefGoogle Scholar
  104. Yang, A., & Freudenstein, F. (1964). Application of dual-number quaternion algebra to the analysis of spatial mechanisms. ASME Journal of Applied Mechanics, 300–308. Google Scholar
  105. Yoshikawa, T. (1985). Manipulability and redundancy control of robotic mechanisms. In Proceedings of the IEEE int. conference on robotics and automation, St. Louis, Missouri (pp. 1004–1009). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center of Excellence ‘Cognitive Interaction Technology’ (CITEC)University of BielefeldBielefeldGermany
  2. 2.International Computer Science Institute (ICSI)BerkeleyUSA

Personalised recommendations