Advertisement

Autonomous Robots

, Volume 30, Issue 3, pp 281–292 | Cite as

Odor source localization using a mobile robot in outdoor airflow environments with a particle filter algorithm

  • Ji-Gong Li
  • Qing-Hao Meng
  • Yang Wang
  • Ming Zeng
Article

Abstract

This paper discusses odor source localization (OSL) using a mobile robot in an outdoor time-variant airflow environment. A novel OSL algorithm based on particle filters (PF) is proposed. When the odor plume clue is found, the robot performs an exploratory behavior, such as a plume-tracing strategy, to collect more information about the previously unknown odor source. In parallel, the information collected by the robot is exploited by the PF-based OSL algorithm to estimate the location of the odor source in real time. The process of the OSL is terminated if the estimated source locations converge within a given small area. The Bayesian-inference-based method is also performed for comparison. Experimental results indicate that the proposed PF-based OSL algorithm performs better than the Bayesian-inference-based OSL method.

Keywords

Odor source localization Olfaction Mobile robot Particle filter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10514_2011_9219_MOESM1_ESM.doc (36 kb)
Explanation to the three Videos (DOC 35,5 KB)

Exploration for OSL (WMV 4,08 MB)

10514_2011_9219_MOESM3_ESM.wmv (1.8 mb)
Reconstructed Bayesian (WMV 1,83 MB)
10514_2011_9219_MOESM4_ESM.wmv (1.9 mb)
Reconstructed PF (WMV 1,87 MB)

References

  1. Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50, 174–188. CrossRefGoogle Scholar
  2. Consi, T. R., Atema, J., Goudey, C. A., Cho, J., & Chryssostomidis, C. (1994). AUV guidance with chemical signals. In Proceedings of 1994 symposium on autonomous underwater vehicle technology (pp. 450–455). CrossRefGoogle Scholar
  3. Farrell, J. A., Pang, S., & Li, W. (2005). Chemical plume tracing via an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 30, 428–442. CrossRefGoogle Scholar
  4. Ferri, G., Caselli, E., Mattoli, V., Mondini, A., Mazzolai, B., & Dario, P. (2009). SPIRAL: a novel biologically-inspired algorithm for gas/odor source localization in an indoor environment with no strong airflow. Robotics and Autonomous Systems, 57, 393–402. CrossRefGoogle Scholar
  5. Grasso, F. W., Consi, T. R., Mountain, D. C., & Atema, J. (2000). Biomimetic robot lobster performs chemo-orientation in turbulence using a pair of spatially separated sensors: progress and challenges. Robotics and Autonomous Systems, 30(1), 115–131. CrossRefGoogle Scholar
  6. Hayes, A. T., Martinoli, A., & Goodman, R. M. (2003). Swarm robotic odor localization: off-line optimization and validation with real robots. Robotica, 21, 427–441. CrossRefGoogle Scholar
  7. Holland, O., & Melhuish, C. (1996). Some adaptive movements of animats with single symmetrical sensors. In Proceedings of 4th conference on simulation and adaptive behavior—from animals to animats (Vol. 4, pp. 55–64). Google Scholar
  8. Ishida, H., Suetsugu, K., Nakamoto, T., & Moriizumi, T. (1994). Study of autonomous mobile sensing system for localization of odor source using gas sensors and anemometric sensors. Sensors and Actuators. A, Physical, 45, 153–157. CrossRefGoogle Scholar
  9. Ishida, H., Nakamoto, T., & Moriizumi, T. (1998). Remote sensing of gas/odor source location and concentration distribution using mobile system. Sensors and Actuators. B, Chemical, 49, 52–57. CrossRefGoogle Scholar
  10. Kahn, H. (1956). Use of different Monte Carlo sampling techniques. In H. A. Meyer (Ed.), Symposium on Monte Carlo methods (pp. 146–190). New York: Wiley. Google Scholar
  11. Kowadlo, G., & Russell, R. A. (2006). Using naïve physics for odor localization in a cluttered indoor environment. Autonomous Robots, 20(3), 215–230. CrossRefGoogle Scholar
  12. Kowadlo, G., & Russell, R. A. (2009). Improving the robustness of naïve physics airflow mapping using Bayesian reasoning on a multiple hypothesis tree. Robotics and Autonomous Systems, 57, 723–737. CrossRefGoogle Scholar
  13. Li, F., Meng, Q. H., Bai, S., Li, J. G., & Popescu, D. (2008). Probability-PSO algorithm for multi-robot based odor source localization in ventilated indoor environments. In Lecture notes in computer science: Vol. 5314. Lecture notes in artificial intelligence and lecture notes in bioinformatics (pp. 1206–1215). Google Scholar
  14. Li, J. G., Meng, Q. H., Li, F., Zeng, M., & Popescu, D. (2009). Mobile robot based odor source localization via particle filter. In Proceedings of IEEE international conference on decision and control (pp. 2984–2989). Google Scholar
  15. Li, W., Farrell, J. A., Pang, S., & Arrieta, R. M. (2006). Moth-inspired chemical plume tracing on an autonomous underwater vehicle. IEEE Transactions on Robotics, 22, 292–307. CrossRefGoogle Scholar
  16. Lilienthal, A. J., & Duckett, T. (2004). Building gas concentration gridmaps with a mobile robot. Robotics and Autonomous Systems, 48, 3–16. CrossRefGoogle Scholar
  17. Lilienthal, A. J., Loutfi, A., & Duckett, T. (2006). Airborne chemical sensing with mobile robots. Sensors, 6, 1616–1678. CrossRefGoogle Scholar
  18. Marques, L., Nunes, U., & de Almeida, A. T. (2006). Particle swarm-based olfactory guided search. Autonomous Robots, 20(3), 277–287. CrossRefGoogle Scholar
  19. Pang, S., & Farrell, J. A. (2006). Chemical plume source localization. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics, 36, 1068–1080. CrossRefGoogle Scholar
  20. Russell, R. A., Thiel, D., & Mackay-Sim, A. (1994). Sensing odour trails for mobile robot navigation. In Proceedings of IEEE international conference on robotics and automation (pp. 2672–2677). Google Scholar
  21. Russell, R. A., Thiel, D., Deveza, R., & Mackay-Sim, A. (1995). A robotic system to locate hazardous chemical leaks. In Proceedings of IEEE international conference on robotics and automation (pp. 556–561). Google Scholar
  22. Russell, R. A., Bab-Hadiashar, A., Shepherd, R. L., & Wallace, G. G. (2003). A comparison of reactive chemotaxis algorithms. Robotics and Autonomous Systems, 45(2), 83–97. CrossRefGoogle Scholar
  23. Sandini, G., Lucarini, G., & Varoli, M. (1993). Gradient-driven self-organizing systems. In Proceedings of IEEE/RSJ international conference on intelligent robots systems (pp. 429–432). Google Scholar
  24. Vergassola, M., Villermaux, E., & Shraiman, B. I. (2007). ‘Infotaxis’ as a strategy for searching without gradients. Nature, 445, 406–409. CrossRefGoogle Scholar
  25. Zarzhitsky, D., Spears, D. F., & Spears, W. M. (2005). Distributed robotics approach to chemical plume tracing. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 4034–4039). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ji-Gong Li
    • 1
  • Qing-Hao Meng
    • 1
  • Yang Wang
    • 1
  • Ming Zeng
    • 1
  1. 1.School of Electrical Engineering and AutomationTianjin UniversityTianjinChina

Personalised recommendations