Advertisement

Autonomous Robots

, Volume 30, Issue 1, pp 99–122 | Cite as

Observability-based consistent EKF estimators for multi-robot cooperative localization

  • Guoquan P. HuangEmail author
  • Nikolas Trawny
  • Anastasios I. Mourikis
  • Stergios I. Roumeliotis
Article

Abstract

In this paper, we investigate the consistency of extended Kalman filter (EKF)-based cooperative localization (CL) from the perspective of observability. We analytically show that the error-state system model employed in the standard EKF-based CL always has an observable subspace of higher dimension than that of the actual nonlinear CL system. This results in unjustified reduction of the EKF covariance estimates in directions of the state space where no information is available, and thus leads to inconsistency. To address this problem, we adopt an observability-based methodology for designing consistent estimators in which the linearization points are selected to ensure a linearized system model with observable subspace of correct dimension. In particular, we propose two novel observability-constrained (OC)-EKF estimators that are instances of this paradigm. In the first, termed OC-EKF 1.0, the filter Jacobians are calculated using the prior state estimates as the linearization points. In the second, termed OC-EKF 2.0, the linearization points are selected so as to minimize their expected errors (i.e., the difference between the linearization point and the true state) under the observability constraints. The proposed OC-EKFs have been tested in simulation and experimentally, and have been shown to significantly outperform the standard EKF in terms of both accuracy and consistency.

Keywords

Cooperative localization Nonlinear estimation Extended Kalman filter Linearization errors Estimator inconsistency Observability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahr, A., Walter, M. R., & Leonard, J. J. (2009). Consistent cooperative localization. In Proc. IEEE international conference on robotics and automation (pp. 3415–3422), Kobe, Japan, May 15–19, 2009. Google Scholar
  2. Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E. (2006). Consistency of the EKF-SLAM algorithm. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 3562–3568), Beijing, China, October 9–15, 2006. Google Scholar
  3. Bar-Shalom, Y., Li, X. R., & Kirubarajan, T. (2001). Estimation with applications to tracking and navigation. New York: Wiley. CrossRefGoogle Scholar
  4. Bertsekas, D. P. (1999). Nonlinear programming. Nashua: Athena Scientific. zbMATHGoogle Scholar
  5. Castellanos, J. A., Neira, J., & Tardos, J. (2004). Limits to the consistency of EKF-based SLAM. In Proc. 5th IFAC symposium on intelligent autonomous vehicles (pp. 1244–1249), Lisbon, Portugal, July 5–7, 2004. Google Scholar
  6. Chen, Z., Jiang, K., & Hung, J. C. (1990). Local observability matrix and its application to observability analyses. In Proc. 16th annual conference of IEEE (pp. 100–103), Pacific Grove, CA, November 27–30, 1990. Google Scholar
  7. Dieudonne, Y., Labbani-Igbida, O., & Petit, F. (2010). Deterministic robot-network localization is hard. IEEE Transactions on Robotics, 26(2), 331–339. CrossRefGoogle Scholar
  8. Feng, Y., Zhu, Z., & Xiao, J. (2006). Heterogeneous multi-robot localization in unknown 3D space. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 4533–4538), Beijing, China, October 9–15, 2006. Google Scholar
  9. Fox, D., Burgard, W., Kruppa, H., & Thrun, S. (2000). A probabilistic approach to collaborative multi-robot localization. Autonomous Robots, 8(3), 325–344. CrossRefGoogle Scholar
  10. Hermann, R., & Krener, A. (1977). Nonlinear controllability and observability. IEEE Transactions on Automatic Control, 22(5), 728–740. zbMATHCrossRefMathSciNetGoogle Scholar
  11. Howard, A., Mataric, M. J., & Sukhatme, G. S. (2002). Localization for mobile robot teams using maximum likelihood estimation. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 434–439), Lausanne, Switzerland, September 30–October 4, 2002. Google Scholar
  12. Howard, A., Mataric, M. J., & Sukhatme, G. S. (2003). Putting the ‘I’ in ‘team’: an ego-centric approach to cooperative localization. In Proc. IEEE international conference on robotics and automation (pp. 868–874), Taipei, Taiwan, September 14–19, 2003. Google Scholar
  13. Huang, S., & Dissanayake, G. (2006). Convergence analysis for extended Kalman filter based SLAM. In Proc. IEEE international conference on robotics and automation (pp. 412–417), Orlando, FL, May 15–19, 2006. Google Scholar
  14. Huang, S., & Dissanayake, G. (2007). Convergence and consistency analysis for extended Kalman filter based SLAM. IEEE Transactions on Robotics, 23(5), 1036–1049. CrossRefGoogle Scholar
  15. Huang, G. P., Mourikis, A. I., & Roumeliotis, S. I. (2008a). Analysis and improvement of the consistency of extended Kalman filter-based SLAM. In Proc. IEEE international conference on robotics and automation (pp. 473–479), Pasadena, CA, May 12–17, 2008. Google Scholar
  16. Huang, G. P., Mourikis, A. I., & Roumeliotis, S. I. (2008b). A first-estimates Jacobian EKF for improving SLAM consistency. In Proc. 11th international symposium on experimental robotics (pp. 373–382), Athens, Greece, July 14–17, 2008. Google Scholar
  17. Huang, G. P., Trawny, N., Mourikis, A. I., & Roumeliotis, S. I. (2009). On the consistency of multi-robot cooperative localization (Technical report). MARS Lab, University of Minnesota, Minnapolis, MN. www.cs.umn.edu/~ghuang/paper/TR_CL_Consistency.pdf
  18. Huang, G. P., Trawny, N., Mourikis, A. I., & Roumeliotis, S. I. (2009). On the consistency of multi-robot cooperative localization. In Proc. robotics: science and systems (pp. 65–72), Seattle, WA, June 28–July 1, 2009. Google Scholar
  19. Huang, G. P., Mourikis, A. I., & Roumeliotis, S. I. (2010). Observability-based rules for designing consistent EKF SLAM estimators. International Journal of Robotics Research, 29(5), 502–528. CrossRefGoogle Scholar
  20. Huntsberger, T. L., Trebi-Ollennu, A., Aghazarian, H., Schenker, P. S., & Pirjanian, P. (2004). Distributed control of multi-robot systems engaged in tightly coupled tasks. Autonomous Robots, 17(1), 79–92. CrossRefGoogle Scholar
  21. Julier, S., & Uhlmann, J. (2001). A counter example to the theory of simultaneous localization and map building. In Proc. IEEE international conference on robotics and automation (pp. 4238–4243), Seoul, Korea, May 21–26, 2001. Google Scholar
  22. Karam, N., Chausse, F., Aufrere, R., & Chapuis, R. (2006). Localization of a group of communicating vehicles by state exchange. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 519–524), Beijing, China, October 9–15, 2006. Google Scholar
  23. Kurazume, R., & Hirose, S. (2000). An experimental study of a cooperative positioning system. Autonomous Robots, 8(1), 43–52. CrossRefGoogle Scholar
  24. Martinelli, A. (2007). Improving the precision on multi robot localization by using a series of filters hierarchically distributed. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 1053–1058), San Diego, CA, October 29–November 2, 2007. Google Scholar
  25. Martinelli, A., & Siegwart, R. (2005). Observability analysis for mobile robot localization. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 1471–1476), Alberta, Canada, August 2–6, 2005. Google Scholar
  26. Meyer, C. (2001). Matrix analysis and applied linear algebra. Philadelphia: SIAM. Google Scholar
  27. Mourikis, A. I., & Roumeliotis, S. I. (2006). Performance analysis of multirobot cooperative localization. IEEE Transactions on Robotics, 22(4), 666–681. CrossRefGoogle Scholar
  28. Mourikis, A. I., & Roumeliotis, S. I. (2006). Optimal sensor scheduling for resource-constrained localization of mobile robot formations. IEEE Transactions on Robotics, 22(5), 917–931. CrossRefGoogle Scholar
  29. Nerurkar, E. D., Roumeliotis, S. I., & Martinelli, A. (2009). Distributed maximum a posteriori estimation for multi-robot cooperative localization. In Proc. IEEE international conference on robotics and automation (pp. 1402–1409), Kobe, Japan, May 12–17, 2009. Google Scholar
  30. Panzieri, S., Pascucci, F., & Setola, R. (2006). Multirobot localization using interlaced extended Kalman filter. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 2816–2821), Beijing, China, October 9–15, 2006. Google Scholar
  31. Rekleitis, I. M., Dudek, G., & Milios, E. E. (2002). Multi-robot cooperative localization: a study of trade-offs between efficiency and accuracy. In Proc. IEEE/RSJ international conference on intelligent robots and systems (pp. 2690–2695), Lausanne, Switzerland, September 30–October 4, 2002. Google Scholar
  32. Roumeliotis, S. I., & Bekey, G. A. (2002). Distributed multirobot localization. IEEE Transactions on Robotics and Automation, 18(5), 781–795. CrossRefGoogle Scholar
  33. Roumeliotis, S. I., & Rekleitis, I. M. (2004). Propagation of uncertainty in cooperative multirobot localization: Analysis and experimental results. Autonomous Robots, 17(1), 41–54. CrossRefGoogle Scholar
  34. Tews, A. D., Sukhatme, G. S., & Mataric, M. J. (2004). A multi-robot approach to stealthy navigation in the presence of an observer. In Proc. IEEE international conference on robotics and automation (pp. 2379–2385), New Orleans, LA, April 26–May 1, 2004. Google Scholar
  35. Trawny, N., & Roumeliotis, S. I. (2010). On the global optimum of planar, range-based robot-to-robot relative pose estimation. In Proc. IEEE international conference on robotics and automation (pp. 3200–3206), Anchorage, AK, May 3–8, 2010. Google Scholar
  36. Trawny, N., Zhou, X. S., & Roumeliotis, S. I. (2009). 3D relative pose estimation from six distances. In Proc. robotics: science and systems (pp. 233–240), Seattle, WA, June 28–July 1, 2009. Google Scholar
  37. Trawny, N., Zhou, X. S., Zhou, K., & Roumeliotis, S. I. (2010). Interrobot transformations in 3-D. IEEE Transactions on Robotics, 26(2), 226–243. CrossRefGoogle Scholar
  38. Zhou, X. S., & Roumeliotis, S. I. (2008). Robot-to-robot relative pose estimation from range measurements. IEEE Transactions on Robotics, 24(6), 1379–1393. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Guoquan P. Huang
    • 1
    Email author
  • Nikolas Trawny
    • 1
  • Anastasios I. Mourikis
    • 2
  • Stergios I. Roumeliotis
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Electrical EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations