Autonomous Robots

, Volume 30, Issue 1, pp 73–86 | Cite as

Cooperative manipulation and transportation with aerial robots

  • Nathan Michael
  • Jonathan Fink
  • Vijay Kumar


In this paper we consider the problem of controlling multiple robots manipulating and transporting a payload in three dimensions via cables. We develop robot configurations that ensure static equilibrium of the payload at a desired pose while respecting constraints on the tension and provide analysis of payload stability for these configurations. We demonstrate our methods on a team of aerial robots via simulation and experimentation.


Aerial robotics Cooperative manipulation Multi-robot control Parallel manipulators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bosscher, P., & Ebert-Uphoff, I. (2004). Wrench-based analysis of cable-driven robots. In Proc. of the IEEE int. conf. on robotics and automation. New Orleans, LA (Vol. 5, pp. 4950–4955). Google Scholar
  2. Cheng, P., Fink, J., Kim, S., & Kumar, V. (2008). Cooperative towing with multiple robots. In Proc. of the int. workshop on the algorithmic foundations of robotics, Guanajuato, Mexico. Google Scholar
  3. Etkin, B. (1998). Stability of a towed body. Journal of Aircraft, 35(2), 197–205. CrossRefGoogle Scholar
  4. Fink, J., Michael, N., Kim, S., & Kumar, V. (2009). Planning and control for cooperative manipulation and transportation with aerial robots. In Int. symposium of robotics research, Luzern, Switzerland. Google Scholar
  5. Gerkey, B. P., Vaughan, R. T., & Howard, A. (2003). The Player/Stage Project: Tools for multi-robot and distributed sensor systems. In Proc. of the int. conf. on advanced robotics, Coimbra, Portugal, pp. 317–323. Google Scholar
  6. Henderson, J., Potjewyd, J., & Ireland, B. (1999). The dynamics of an airborne towed target system with active control. Proc of the Institution of Mech Eng, Part G: Journal of Aerospace Engineering, 213(5), 305–319. CrossRefGoogle Scholar
  7. Hunt, K. H. (1978). Kinematic geometry of mechanisms. London: Oxford University Press. zbMATHGoogle Scholar
  8. Murray, R. M. (1996). Trajectory generation for a towed cable system using differential flatness. In IFAC world congress, San Francisco, CA. Google Scholar
  9. Oh, S. R., & Agrawal, S. K. (2007). A control Lyapunov approach for feedback control of cable-suspended robots. In Proc. of the IEEE int. conf. on robotics and automation. Rome, Italy (pp. 4544–4549). Google Scholar
  10. Phillips, J. (1990). Freedom in machinery, vol. 1. Cambridge: Cambridge University Press. Google Scholar
  11. Selig, J. M. (2005). Geometric fundamentals of robotics. Berlin: Springer. zbMATHGoogle Scholar
  12. Sgarioto, D., & Trivailo, P. (2005). Cable assisted rendezvous for aircraft with surface locations. In Proc. of the int. federation of automatic control, Prague, Czech Republic. Google Scholar
  13. Stump, E., & Kumar, V. (2006). Workspaces of cable-actuated parallel manipulators. ASME Journal of Mechanical Design, 128(1), 159–167. CrossRefGoogle Scholar
  14. Verhoeven, R. (2004). Analysis of the workspace of tendon-based Stewart platforms. PhD thesis, University Duisburg-Essen, Essen, Germany. Google Scholar
  15. Williams, P., Sgarioto, D., & Trivailo, P. (2006). Optimal control of an aircraft-towed flexible cable system. Journal of Guidance, Control, and Dynamics, 29(2), 401–410. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations