Autonomous Robots

, Volume 30, Issue 1, pp 57–71

Setpoint regulation for stochastically interacting robots

Open Access
Article

Abstract

We present an integral feedback controller that regulates the average copy number of an assembly in a system of stochastically interacting robots. The mathematical model for these robots is a tunable reaction network, which makes this approach applicable to a large class of other systems, including ones that exhibit stochastic self-assembly at various length scales. We prove that this controller works for a range of setpoints and how to compute this range both analytically and experimentally. Finally, we demonstrate these ideas on a physical testbed.

Keywords

Stochastic self-assembly Master equation Stochastic hybrid system Integral control Chemical kinetics 

References

  1. Ayanian, N., White, P., Halasz, A., Yim, M., & Kumar, V. (2008). Stochastic control for self-assembly of xbots. In ASME mechanisms and robotics conference, New York. Google Scholar
  2. Boncheva, M., Bruzewicz, D. A., & Whitesides, G. M. (2003). Millimeter-scale self-assembly and its applications. Pure and Applied Chemistry, 75, 621–630. CrossRefGoogle Scholar
  3. Burden, S., Napp, N., & Klavins, E. (2006). The statistical dynamics of programmed robotic self-assembly. In Conference proceedings ICRA 06 (pp. 1469–1476). Google Scholar
  4. Davis, M. (1993). Markov processes and optimization. London: Chapman & Hall. Google Scholar
  5. Donald, B., Levey, C., Paprotny, I., & Rus, D. (2008). Simultaneous control of multiple mems microrobots. In The eighth international workshop on the algorithmic foundations of robotics (WAFR). Google Scholar
  6. El-Samad, H., Goff, J. P., & Khammash, M. (2002). Calcium homeostasis and parturient hypocalcemia: An integral feedback perspective. Journal of Theoretical Biology, 214, 17–29. CrossRefMathSciNetGoogle Scholar
  7. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81(25), 2340–2361. CrossRefGoogle Scholar
  8. Hespanha, J. P. (2007). Modeling and analysis of stochastic hybrid systems. IEE Proc—Control Theory & Applications, 153(5), 520–535. Special Issue on Hybrid Systems. CrossRefMathSciNetGoogle Scholar
  9. Hespanha, J. P., & Abhyudai, J. (2005). Stochastic models for chemically reacting systems using polynomial hybrid systems. International Journal of Robust and Nonlinear Control, 15(15), 669–689. MATHCrossRefMathSciNetGoogle Scholar
  10. Hosokawa, K., Shimoyama, I., & Miura, H. (1994). Dynamics of self assembling systems: Analogy with chemical kinetics. Artificial Life, 1(4), 413–427. CrossRefGoogle Scholar
  11. Kampen, N. V. (2007). Stochastic processes in physics and chemistry (3rd edn.). Amsterdam: Elsevier. Google Scholar
  12. Mastrangeli, M., Abbasi, S., Varel, Ç., van Hoof, C., Celis, C., & Böhringer, K. F. (2009). Self-assembly from milli to nanoscales: Methods and applications. IOP Journal of Micromechanics and Microengineering, 19(8), 37. Google Scholar
  13. McQuarrie, D. A. (1967). Stochastic approach to chemical kinetics. Journal of Applied Probability, 4, 413–478. MATHCrossRefMathSciNetGoogle Scholar
  14. Meyn, S. P., & Tweedie, R. L. (1993). Stability of Markovian processes II: Continuous-time processes and sampled chains. Advances in Applied Probability, 25(3), 487–517. MATHCrossRefMathSciNetGoogle Scholar
  15. Meyn, S. P., & Tweedie, R. L. (1993). Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Advances in Applied Probability, 25(3), 518–548. MATHCrossRefMathSciNetGoogle Scholar
  16. Onoe, H., Matsumoto, K., & Shimoyama, I. (2004). Three-dimensional micro-self-assembly using hydrophobic interaction controlled by self-assembled monolayers. Journal of Microelectromechanical Systems, 13, 603–611. CrossRefGoogle Scholar
  17. Rothemund, P. W. K. (2006). Folding dna to create nanoscale shapes and patterns. Nature, 440, 297–302. CrossRefGoogle Scholar
  18. Saeedi, E., Kim, S., Ho, H., & Parviz, B. A. (2008). Self-assembled single-digit micro-display on plastic. In MEMS/MOEMS components and their applications V. Special focus topics: transducers at the micro-nano interface, vol. 6885 (pp. 688509-1–688509-12). Bellingham: SPIE. Google Scholar
  19. White, P. J., Kopanski, K., & Lipson, H. (2004). Stochastic self-reconfigurable cellular robotics. In IEEE international conference on robotics and automation (ICRA04) (pp. 2888–2893). Google Scholar
  20. White, P., Zykov, V., Bongard, J., & Lipson, H. (2005). Three dimensional stochastic reconfiguration of modular robots. In Proceedings of robotics science and systems, Cambridge, MA. Google Scholar
  21. Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirikjian, G. (2007). Modular self-reconfigurable robot systems [grand challenges of robotics]. Robotics Automation Magazine, IEEE, 14, 43–52. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Electrical EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Electrical EngineeringUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations