Autonomous Robots

, Volume 29, Issue 3–4, pp 367–380 | Cite as

A provably complete exploration strategy by constructing Voronoi diagrams

Article

Abstract

We present novel exploration algorithms that enable the construction of Voronoi diagrams over unknown areas using a vehicle equipped with range sensors. The underlying control law uses range measurements to make the vehicle track Voronoi edges between obstacles. The exploration algorithms make decisions at vertices in the Voronoi diagram to expand the explored area until a complete Voronoi diagram is constructed in finite time. Our exploration algorithms are provably complete, and the convergence of the control law is guaranteed. Simulations and experimental results are provided to demonstrate the effectiveness of both the control law and the exploration algorithms.

Keywords

Voronoi diagrams Map-making algorithms Robot control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, S., Doh, N. L., Chung, W., & Nam, S. (2008). The robust construction of a generalized Voronoi graph (GVG) using partial range data for guide robots. Industrial Robot: An International Journal, 35, 259–265. CrossRefGoogle Scholar
  2. Aurenhammer, F. (1991). Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Computing Surveys, 23, 345–405. CrossRefGoogle Scholar
  3. Bandyopadhyay, S., & Coyle, E. J. (2003). Minimizing communication costs in hierarchically clustered networks of wireless sensors. Wireless Communications and Networking, 2, 1274–1279. Google Scholar
  4. Bhattacharya, P., & Gavrilova, M. L. (2008). Roadmap-based path planning—using the Voronoi diagram for a clearance-based shortest path. IEEE Robotics and Automation Magazine, 15, 58–66. CrossRefGoogle Scholar
  5. Brooks, R. A. (1999). Cambrian intelligence: the early history of the new AI. Cambridge: MIT Press. MATHGoogle Scholar
  6. Brown, G. (1965). Point density in stems per acre. New Zealand Forestry Service Research Notes, 38, 1–11. Google Scholar
  7. Choset, H., & Burdick, J. (2000). Sensor-based exploration: the hierarchical generalized Voronoi diagram. The International Journal of Robotics Research, 19, 96–125. CrossRefGoogle Scholar
  8. Choset, H., & Nagatani, K. (2001). Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization. IEEE Transactions on Robotics and Automation, 17, 125–137. CrossRefGoogle Scholar
  9. Choset, H., Konukseven, I., & Burdick, J. (1996). Mobile robot navigation: issues in implementating the generalized Voronoi graph in the plane. In Proc. of IEEE/SICE/RSJ international conference on multisensor fusion and integration for intelligent systems (pp. 241–248), Washington, DC, USA. Google Scholar
  10. Choset, H., Konukseven, I., & Rizzi, A. (1997). Sensor based planning: a control law for generating the generalized Voronoi graph. In Proc. of 8th international conference on advanced robotics (pp. 333–338), CA, USA. Google Scholar
  11. Choset, H., Walker, S., Eiamsa-Ard, K., & Burdick, J. (2000). Incremental construction of the hierarchical generalized Voronoi graph. The International Journal of Robotics Research, 19, 126–148. CrossRefGoogle Scholar
  12. Cortés, J., Martínez, S., Karatas, T., & Bullo, F. (2004). Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2), 243–255. CrossRefGoogle Scholar
  13. Du, Q., Faber, V., & Gunzburger, M. (1999). Centroidal Voronoi tessellations: applications and algorithms. SIAM Review, 41, 637–676. MATHCrossRefMathSciNetGoogle Scholar
  14. Egerstedt, M., Hu, X., & Stotsky, A. (2001). Control of mobile platforms using a virtual vehicle approach. IEEE Transactions on Automatic Control, 46, 1777–1782. MATHCrossRefMathSciNetGoogle Scholar
  15. Fortune, S. J. (1987). A sweepline algorithm for Voronoi diagrams. Algorithmica, 2, 153–174. MATHCrossRefMathSciNetGoogle Scholar
  16. Garrido, S., Moreno, L., Blanco, D., & Martin, F. (2007). Exploratory navigation based on Voronoi transform and fast marching. In IEEE international symposium on intelligent signal processing (pp. 1–6), Xiamen, China. Google Scholar
  17. Khalil, H. K. (2002). Nonlinear Systems (3rd ed). New York: Prentice Hall. MATHGoogle Scholar
  18. Kim, J., Zhang, F., & Egerstedt, M. (2009). Curve tracking control for autonomous vehicles with rigidly mounted range sensors. Journal of Intelligent and Robotic Systems, 56, 177–198. CrossRefGoogle Scholar
  19. Klein, R. (1988). Abstract Voronoi diagrams and their applications. Computational Geometry and its Applications, 333, 148–157. Google Scholar
  20. Klein, R. (1990). Concrete and abstract Voronoi diagrams. Berlin: Springer. Google Scholar
  21. Lavalle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press. MATHCrossRefGoogle Scholar
  22. Lindeberg, T. (1990). Scale-space for discrete signals. IEEE Transactions of Pattern Analysis and Machine Intelligence, 12(3), 234–254. CrossRefGoogle Scholar
  23. Martínez, S., Cortés, J., & Bullo, F. (2007). Motion coordination with distributed information. IEEE Control Systems Magazine, 27(4), 75–88. CrossRefGoogle Scholar
  24. Mead, R. (1966). A relation between the individual plant-spacing and yield. Annals of Botany, N. S, 30, 301–309. Google Scholar
  25. Mondada, F., Franzi, E., & Ienne, P. (1993). Mobile robot miniaturisation: a tool for investigation in control algorithms. In Proc. of the third international symposium on experimental robotics (pp. 501–513), Kyoto, Japan. Google Scholar
  26. Nagatani, K., & Choset, H. (1999). Toward robust sensor based exploration by constructing reduced generalized Voronoi graph. In Proc. of IEEE/RSJ international conference on intelligent robots and systems (pp. 1687–1692), Kyongju, Korea. Google Scholar
  27. Newman, D. (1982). The hexagon theorem. IEEE Transactions on Information Theory, 28, 137–139. MATHCrossRefGoogle Scholar
  28. Okabe, A., Boots, B., & Sugihara, K. (1992). Spatial tessellations: concepts and applications of Voronoi diagrams. New York: Wiley. MATHGoogle Scholar
  29. Rao, N. S. V., Stoltzfus, N., & Iyengar, S. S. (1991). A retraction method for learned navigation in unknown terrains for a circular robot. IEEE Transactions on Robotics and Automation, 7, 699–707. CrossRefGoogle Scholar
  30. Reddy, P. V., Justh, E. W., & Krishnaprasad, P. S. (2006). Motion camouflage in three dimensions. In Proc. of 45th IEEE conf. on decision and control (pp. 3327–3332), San Diego, CA, USA. Google Scholar
  31. Samson, C. (1995). Control of chained systems: Application to path-following and time-varying point-stabilization of mobile robots. IEEE Transactions on Automatic Control, 40, 64–77. MATHCrossRefMathSciNetGoogle Scholar
  32. Sudha, N., Nandi, S., & Sridharan, K. (1999). A parallel algorithm to construct Voronoi diagram and its VLSI architecture. In Proc. of IEEE international conference on robotics and automation (pp. 1683–1688), Detroit, MI, USA. Google Scholar
  33. Svec, P. (2007). Using methods of computational geometry in robotics. PhD Thesis, Brno University of Technology, Brno, Czech Republic. Google Scholar
  34. Wein, R., Berg, J. P., & Halperin, D. (2005). The visibility–Voronoi complex and its applications. In Proc. of the twenty-first annual symposium on computational geometry (pp. 63–72), Pisa, Italy. Google Scholar
  35. Zhang, F., Fratantoni, D.M., Paley, P.D., Lund, J., & Leonard, N.E. (2007). Control of coordinated patterns for ocean sampling. International Journal of Control, 80, 1186–1199. MATHCrossRefMathSciNetGoogle Scholar
  36. Zhang, F., Justh, E., & Krishnaprasad, P. S. (2004). Boundary following using gyroscopic control. In Proc. of 43rd IEEE conf. on decision and control (pp. 5204–5209), Atlantis, Paradise Island, Bahamas. Google Scholar
  37. Zhang, F., & Leonard, N. E. (2007). Coordinated patterns of unit speed particles on a closed curve. Systems and Control Letters, 56, 397–407. MATHCrossRefMathSciNetGoogle Scholar
  38. Zhang, F., O’Connor, A., Luebke, D., & Krishnaprasad, P. S. (2004). Experimental study of curvature-based control laws for obstacle avoidance. In Proc. of IEEE international conf. on robotics and automation (pp. 3849–3854), New Orleans, LA, USA. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations