Autonomous Robots

, Volume 29, Issue 3–4, pp 357–366 | Cite as

Using efference copy and a forward internal model for adaptive biped walking

  • Johannes Schröder-Schetelig
  • Poramate Manoonpong
  • Florentin Wörgötter
Open Access
Article

Abstract

To behave properly in an unknown environment, animals or robots must distinguish external from self-generated stimuli on their sensors. The biologically inspired concepts of efference copy and internal model have been successfully applied to a number of robot control problems. Here we present an application of this for our dynamic walking robot RunBot. We use efference copies of the motor commands with a simple forward internal model to predict the expected self-generated acceleration during walking. The difference to the actually measured acceleration is then used to stabilize the walking on terrains with changing slopes through its upper body component controller. As a consequence, the controller drives the upper body component (UBC) to lean forwards/backwards as soon as an error occurs resulting in dynamical stable walking. We have evaluated the performance of the system on four different track configurations. Furthermore we believe that the experimental studies pursued here will sharpen our understanding of how the efference copies influence dynamic locomotion control to the benefit of modern neural control strategies in robots.

Keywords

Efference copy Forward internal model Neural network Biped robot Dynamic walking Walking machine 

Supplementary material

Online Resource (MPG 15.7 MB)

References

  1. Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085. CrossRefGoogle Scholar
  2. Dürr, V., Krause, A., Schmitz, J., & Cruse, H. (2003). Neuroethological concepts and their transfer to walking machines. International Journal of Robotics Research, 22, 151–167. Google Scholar
  3. Held, R. (1961). Exposure history as a factor in maintaining stability of perception and coordination. Journal of Nervous and Mental Disease, 132, 26–32. Google Scholar
  4. von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Die Naturwissenschaften, 37, 464–476. CrossRefGoogle Scholar
  5. Huang, W., Chew, C.-M., Zheng, Y., & Hong, G.-S. (2008). Pattern generation for bipedal walking on slopes and stairs. In 8th IEEE-RAS international conference on humanoids (pp. 205–210). Google Scholar
  6. Iida, S., Kondo, T., & Ito, K. (2006). An environmental adaptation mechanism for a biped walking robot control based on elicitation of sensorimotor constraints. SAB 2006. LNAI 4095 (pp. 174–184). Google Scholar
  7. Iida, F., & Tedrake, R. (2009). Minimalistic control of a compass gait robot in rough terrain. In Proceedings of the IEEE/RAS international conference on robotics and automation (ICRA). IEEE/RAS (pp. 1985–1990). Google Scholar
  8. Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727. CrossRefGoogle Scholar
  9. Kim, D., Seo, S.-J., & Park, G.-T. (2005). Zero-moment point trajectory modelling of a biped walking robot using an adaptive neuro-fuzzy system. IEEE Proceedings—Control Theory and Applications, 152(4), 411–426. CrossRefGoogle Scholar
  10. Lewis, M. A., & Simó, L. S. (2001). Certain principles of biomorphic robots. Autonomous Robots, Special Issue on Biomorphic Robots, 11(3), 221–226. MATHGoogle Scholar
  11. Lewis, M. A., & Bekey, G. A. (2002). Gait adaptation in a quadruped robot. Autonomous Robots, 12(3), 301–312. MATHCrossRefGoogle Scholar
  12. Manoonpong, P., Geng, T., & Wörgötter, F. (2006). Exploring the dynamic walking range of the biped robot “Runbot” with an active upper-body component. In Proceedings of the sixth IEEE-RAS international conference on humanoid robots (humanoids 2006) (pp. 418–424). Google Scholar
  13. Manoonpong, P., Geng, T., Kulvicius, T., Porr, B., & Wörgötter, F. (2007). Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Computational Biology, 3(7), e134. CrossRefGoogle Scholar
  14. Manoonpong, P., & Wörgötter, F. (2009). Efference copies in neural control of dynamic biped walking. Robotics and Autonomous Systems, 57(11), 1140–1153. CrossRefGoogle Scholar
  15. Miyakoshi, S. (2006). Bipedal walking with a memory-based motion controller. Journal of the Robotics Society of Japan, 24(5), 623–631 (in Japanese). Google Scholar
  16. Namiki, A., Hashimoto, K., & Ishikawa, M. (2003). A hierarchical control architecture for high-speed visual servoing. International Journal of Robotics Research, 22(10–11), 873–888. Google Scholar
  17. Nissen, S. (2003). Implementation of a fast artificial neural network library (fann). Report: Department of Computer Science, University of Copenhagen (DIKU). Software available at http://www.sourceforge.net/projects/fann.
  18. Ogino, M., Toyama, H., Fuke, S., Mayer, N. M., Watanabe, A., & Asada, M. (2008). Compliance control for biped walking on rough terrain. In RoboCup 2007, LNAI 5001 (pp. 556–563). Google Scholar
  19. Porr, B., & Wörgötter, F. (2003). Isotropic sequence order learning in a closed loop behavioural system. Roy Soc Phil Trans Mathematical Physical and Engineering Sciences, 361, 2225–2244. CrossRefGoogle Scholar
  20. Russo, P., Webb, B., Reeve, R., Arena, P., & Patané, L. (2005). A cricket-inspired neural network for feedforward compensation and multisensory integration. In Proceedings of the 44th IEEE conference on decision and control and European control conference, Sevilla, Spain (pp. 227–232). Google Scholar
  21. Schröder-Schetelig, J., Manoonpong, P., & Wörgötter, F. (2008). Using efference copy and neural control for adaptive walking on different terrains. In Frontiers in computational neuroscience. Conference abstract: Bernstein symposium 2008. doi:10.3389/conf.neuro.10.2008.01.115.
  22. Vukobratovic, M., Borovac, B., Surla, D., & Stokic, D. (1990). Biped locomotion-dynamics, stability, control and application. Berlin: Springer. MATHGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Johannes Schröder-Schetelig
    • 1
  • Poramate Manoonpong
    • 2
  • Florentin Wörgötter
    • 2
  1. 1.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  2. 2.Bernstein Center for Computational Neuroscience (BCCN)University of GöttingenGöttingenGermany

Personalised recommendations