Autonomous Robots

, Volume 29, Issue 3–4, pp 331–355 | Cite as

Attractor dynamics approach to formation control: theory and application

  • Sérgio MonteiroEmail author
  • Estela Bicho


In this paper we show how non-linear attractor dynamics can be used as a framework to control teams of autonomous mobile robots that should navigate according to a predefined geometric formation. The environment does not need to be known a priori and may change over time. Implicit to the control architecture are some important features such as establishing and moving the formation, split and join of formations (when necessary to avoid obstacles). Formations are defined by a formation matrix. By manipulating this formation matrix it is also possible to switch formations at run time. Examples of simulation results and implementations with real robots (teams of Khepera robots and medium size mobile robots), demonstrate formation switch, static and dynamic obstacle avoidance and split and join formations without the need for any explicit coordination scheme. Robustness against environmental perturbations is intrinsically achieved because the behaviour of each robot is generated as a time series of asymptotically stable states, which contribute to the asymptotic stability of the overall control system.


Formation control Multi-robot systems Attractor dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonelli, G., & Chiaverini, S. (2006). Kinematic control of platoons of autonomous vehicles. IEEE Transactions on Robotics, 22(6), 1285–1292. CrossRefGoogle Scholar
  2. Arai, T., Pagello, E., & Parker, L. (2002). Editorial: Advances in multi-robot systems. IEEE Transactions on Robotics and Automation, 18(5), 655–661. CrossRefGoogle Scholar
  3. Archibald, J. K., & Frost, R. L. (2007). A decentralized approach to multi-robot formation initialization. International Journal of Robotics and Automation, 22(4), 304–312. CrossRefGoogle Scholar
  4. Asama, H., Kurokawa, H., Ota, J., & Sekiyama, K. (2009). Cooperative object tracking with mobile robotic sensor network. Distributed Autonomous Robotic Systems, 8, 51–62. Google Scholar
  5. Balch, T., & Arkin, R. C. (1998). Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 14(6), 926–939. CrossRefGoogle Scholar
  6. Balch, T., & Hybinette, M. (2000). Social potentials for scalable multi-robot formations. In Proc. of the IEEE intl. conf. on robotics and automation (Vol. 1, pp. 73–80). Google Scholar
  7. Barfoot, T., & Clark, C. (2004). Motion planning for formations of mobile robots. Robotics and Autonomous Systems, 46, 65–78. CrossRefGoogle Scholar
  8. Bauer, F., Bristow, J., Hartman, K., Quinn, D., & How, J. (1997). Sattelite formation flying using an innovative autonomous control system (autocon) environment. In AIAA guidance, navigation and control conf. (pp. 657–666). Google Scholar
  9. Beard, R., Lawton, J., & Hadaegh, F. (1999). A feedback architecture for formation control. In Proc. of the 1999 American control conf. (Vol. 6, pp. 4087–4091). San Diego, USA. Google Scholar
  10. Bicho, E. (2000). Dynamic approach to behavior-based robotics: design, specification, analysis, simulation and implementation. Aachen: Shaker Verlag. Google Scholar
  11. Bicho, E., & Monteiro, S. (2003). Formation control for multiple mobile robots: a non-linear attractor dynamics approach. In 2003 IEEE/RSJ intl. conf. on intelligent robots and systems (pp. 2016–2022). Las Vegas, NV. Google Scholar
  12. Bicho, E., & Schöner, G. (1997). The dynamic approach to autonomous robotics demonstrated on a low-level vehicle platform. Robotics and Autonomous Systems, 21, 23–35. CrossRefGoogle Scholar
  13. Bicho, E., Mallet, P., & Schöner, G. (2000). Target representation on an autonomous vehicle with low-level sensors. The International Journal of Robotics Research, 19(5), 424–447. CrossRefGoogle Scholar
  14. Bicho, E., Louro, L., & Erlhagen, W. (2004). Coordinated transportation with minimal explicit communication between robots. In 5th IFAC symposium on intelligent autonomous vehicles (IAV 2004), Lisbon, Portugal. Google Scholar
  15. Bicho, E., Moreira, A., Diegues, S., Carvalheira, M., & Monteiro, S. (2006). Airship formation control. In 3rd intl. conf. on informatics in control, automation and robotics, in workshop multi-agent robotic systems (MARS 2006) (pp. 22–33). Setubal, Portugal. Google Scholar
  16. Bom, J., Thuilot, B., Marmoiton, F., & Martinet, P. (2005). A global control strategy for urban vehicles platooning relying on nonlinear decoupling laws. In Proc. of the IEEE/RSJ intl. conf. on intelligent robots and systems (pp. 1995–2000). Edmonton, Alberta, Canada. Google Scholar
  17. Brimble, R., & Press, J. (2003). Minimal cost robot formations. In Proc. of the 11th intl. conf. on advanced robotics (pp. 1487–1495). Coimbra, Portugal. Google Scholar
  18. Costa e Silva, E., Bicho, E., & Erlhagen, W. (2006). The potential field method and the nonlinear attractor dynamics approach: what are the differences? In Controlo 2006—7th Portuguese conference on automatic control, Lisboa, Portugal. Google Scholar
  19. Cruz, C., & Carelli, R. (2008). Dynamic model based formation control and obstacle avoidance of multi-robot systems. Robotica, 26, 345–356. Google Scholar
  20. Das, A., Fierro, R., Kumar, V., Ostrowski, J. P., Spletzer, J., & Taylor, C. J. (2002). A vision-based formation control framework. IEEE Transactions on Robotics and Automation, 18(5), 813–825. CrossRefGoogle Scholar
  21. Desai, J., Ostrowski, J., & Kumar, V. (2001). Modeling and control of formations of nonholonomic mobile robots. IEEE Transactions on Robotics and Automation, 17(6), 905–908. CrossRefGoogle Scholar
  22. Do, K. D., & Pan, J. (2007). Nonlinear formation control of unicycle-type mobile robots. Robotics and Autonomous Systems, 55, 191–204. CrossRefGoogle Scholar
  23. Edwards, D., Bean, T., Odell, D., & Anderson, M. (2004). A leader–follower algorithm for multiple AUV formations. In Autonomous underwater vehicles (pp. 40–46). Google Scholar
  24. Erlhagen, W., & Bicho, E. (2006). The dynamic neural field approach to cognitive robotics. Journal of Neural Engineering, 3, 36–54. CrossRefGoogle Scholar
  25. Fahimi, F. (2007). Sliding-mode formation control for underactuated surface vessels. IEEE Transactions on Robotics, 23(3), 617–622. CrossRefGoogle Scholar
  26. Fahimi, F. (2008). Full formation control for autonomous helicopter groups. Robotica, 26(2), 143–156. CrossRefGoogle Scholar
  27. Fajen, B. R., Warren, W. H., Temizer, S., & Kaelbling, L. P. (2003). A dynamical model of visually-guided steering, obstacle avoidance, and route selection. International Journal of Computer Vision, 54(1/2/3), 13–24. zbMATHCrossRefGoogle Scholar
  28. Fierro, R., Alur, R., Das, A., Esposito, J., Grudic, G., Hur, Y., Kumar, V., Lee, I., Ostrowski, J., Pappas, G., Southall, B., Spletzer, J., & Taylor, C. (2002). A framework and architecture for multi-robot coordination. The International Journal of Robotics Research, 21(10–11), 977–995. CrossRefGoogle Scholar
  29. Fowler, J., & Andrea, R. (2002). Distributed control of close formation flight. In Proc. of the 41st IEEE conf. on decision and control (pp. 2972–2977). Las Vegas, USA. Google Scholar
  30. Fredslund, J., & Matarić, M. (2002). A general local algorithm for robot formations. IEEE Transactions on Robotics and Automation, 18(5), 837–846, special issue on Multirobot Systems. CrossRefGoogle Scholar
  31. Gazi, V. (2005). Swarm aggregations using artificial potentials and sliding-mode control. IEEE Transactions on Robotics, 21(6), 1208–1214. CrossRefGoogle Scholar
  32. Ge, S., & Fua, C. (2005). Queues and artificial potentials trenches for multirobot formations. IEEE Transactions on Robotics, 21(4), 646–656. CrossRefGoogle Scholar
  33. Gustavi, T., & Hu, X. (2005). Formation control for mobile robots with limited sensor information. In Proc. IEEE intl. conf. robotics and automation (pp. 1791–1796). Barcelona, Spain. Google Scholar
  34. Hao, Y., & Agrawal, S. (2005). Formation planning and control of UGVs with trailers. Autonomous Robots, 19, 257–270. CrossRefGoogle Scholar
  35. Honary, E., McQuade, F., Ward, R., Woodrow, I, Shaw, A., Barnes, D., & Fyfe, M. (2009). Robotic experiments with cooperative aerobots and underwater swarms. Robotica, 27(1), 37–49. CrossRefGoogle Scholar
  36. Hong, S., Shin, S., & Ahn, D. (2001). Formation control based on artificial intelligence for multi-agent coordination. In Proc. of the intl. symposium on industrial electronics (pp. 429–734). Busan, Korea. Google Scholar
  37. Hsieh, A., Kumar, V., & Chaimowicz, L. (2008). Decentralized controllers for shape generation with robotic swarms. Robotica, 26(05), 691–701. CrossRefGoogle Scholar
  38. Hu, X., & Zeigler, B. (2004). Model continuity to support software development for distributed robotic systems: a team formation example. Journal of Intelligent and Robotic Systems, 39, 71–87. CrossRefGoogle Scholar
  39. Johnson, P., & Bay, J. (1995). Distributed control of simulated autonomous mobile robot collectives in payload transportation. Autonomous Robots, 2(1), 43–64. CrossRefGoogle Scholar
  40. Kalantar, S., & Zimmer, U. (2007). Distributed shape control of homogeneous swarms of autonomous underwater vehicles. Autonomous Robots, 22(1), 37–53. CrossRefGoogle Scholar
  41. Kalantar, S., & Zimmer, U. (2009). Optima localization by vehicle formations imitating the Nelder-Mead simplex algorithm. Autonomous Robots, 27(3), 239–260. CrossRefGoogle Scholar
  42. Kaminka, G., Schechter-Glick, R., & Sadov, V. (2008). Using sensor morphology for multirobot formations. IEEE Transactions on Robotics, 24(2), 271–282. CrossRefGoogle Scholar
  43. Kim, G., Lee, D., & Lee, K. (2001). Formation approach for mobile robots with inaccurate sensor information. In Proc. of the intl. conf. on control, automation and systems (pp. 805–808). Cheju National University, Jeju, Korea. Google Scholar
  44. Kostelnik, P., Samulka, M., & Janosik, M. (2002). Scalable multi-robot formations using local sensing and communication. In Proc. of the third intl. workshop on robot motion and control (pp. 319–324). Google Scholar
  45. Krishnanand, K., & Ghose, D. (2005). Formations of minimalist mobile robots using local-templates and spatially distributed interactions. Robotics and Autonomous Systems, 53, 194–213. CrossRefGoogle Scholar
  46. Kwok, N. M., Ha, Q. P., & Fang, G. (2007). Motion coordination for construction vehicles using swarm intelligence. International Journal of Advanced Robotic Systems, 4(4), 469–476. Google Scholar
  47. Large, E., Christensen, H., & Bajcy, R. (1999). Scaling the dynamic approach to path planning and control: Competition amoung behavioral constraints. The International Journal of Robotics Research, 18(1), 37–58. Google Scholar
  48. Leonard, N., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control of groups. In Proc. of the 40th conf. on decision and control (pp. 2968–2973). Google Scholar
  49. Lewis, M. A., & Tan, K. (1997). High precision formation control of mobile robots using virtual structures. Autonomous Robots, 4, 387–403. CrossRefGoogle Scholar
  50. Monteiro, S., & Bicho, E. (2002). A dynamical systems approach to behavior-based formation control. In Proc. IEEE intl. conf. robotics and automation (pp. 2606–2611). Google Scholar
  51. Monteiro, S., & Bicho, E. (2008). Robot formations: Robots allocation and leader-follower pairs. In Proc. IEEE international conference on robotics and automation ICRA 2008 (pp. 3769–3775). Google Scholar
  52. Monteiro, S., Vaz, M., & Bicho, E. (2004). Attractor dynamics generates robot formations: from theory to implementation. In Proc. IEEE intl. conf. on robotics and automation (pp. 2582–2586). New Orleans, LA. Google Scholar
  53. Naffin, D. J., & Sukhatme, G. S. (2004). Negotiated formations. In Proceedings of the eighth conference on intelligent autonomous systems (pp. 181–190). Amsterdam, The Netherlands. Google Scholar
  54. Nangia, R., & Palmer, M. (2007). Formation flying of a commercial aircraft—assessment using a new approach—wing span load and camber control. In Proc. of the 45th AIAA aerospace sciences meeting and exhibit, Reno, USA. Google Scholar
  55. Ogren, P. (2004). Split and join of vehicle formations doing obstacle avoidance. In Proc. of the 2004 IEEE intl. conf. on robotics and automation (pp. 1951–1955). New Orleans, LA. Google Scholar
  56. Ogren, P., Fiorelli, E., & Leonard, N. (2002). Formations with a mission: stable coordination of vehicle group maneuvers. In Proc. symposium on mathematical theory of networks and systems. Google Scholar
  57. Olfati-Saber, R., & Murray, R. (2002). Graph rigidity and distributed formation stabilization of multi-vehicle systems. In Proc. of the 41st conf. on decision and control (Vol. 3, pp. 2965–2971). Las Vegas, NV. Google Scholar
  58. Pledgie, S., Hao, Y., Pereira, A., Agrawal, S., & Murphey, R. (2002). Groups of unmanned vehicles: differential flatness, trajectory planning and control. In Proc. of the 2002 IEEE intl. conf. on robotics and automation (pp. 3461–3466). Washington, DC. Google Scholar
  59. Ren, W., & Beard, R. (2002). Virtual structure based spacecraft formation control with formation feedback. In AIAA guidance, navigation, and control conference (pp. 2002–4963). Monterey, CA. Google Scholar
  60. Ren, W., & Sorensen, N. (2008). Distributed coordination architecture for multi-robot formation control. Robotics and Autonomous Systems, 56, 324–333. CrossRefGoogle Scholar
  61. Renaud, P., Cervera, E., & Martinet, P. (2004). Towards a reliable vision-based mobile robot formation control. In Proc. of the IEEE/RSJ intl. conf. on intelligent robots and systems (pp. 3176–3181). Sendai, Japan. Google Scholar
  62. Schöner, G., & Dose, M. (1992). A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion. Robotics and Autonomous Systems, 10, 253–267. CrossRefGoogle Scholar
  63. Schöner, G., Dose, M., & Engels, C. (1995). Dynamics of behavior: Theory and applications for autonomous robot architectures. Robotics and Autonomous Systems, 16, 213–245. CrossRefGoogle Scholar
  64. Seiler, P., Pant, A., & Hedrick, K. (2002). Analysis of bird formations. In Proc. of the 41st IEEE conf. on decision and control (pp. 118–123). Las Vegas, USA. Google Scholar
  65. Soares, R., & Bicho, E. (2002). Using attractor dynamics to generate decentralized motion control of two mobile robots transporting a long object in coordination. In Proc. of the workshop on cooperative robotics, in IROS, 2002: 2002 IEEE/RSJ intl. conf. on intelligent robots and systems. EPFL Lausanne, Switzerland. Google Scholar
  66. Soares, R., Bicho, E., Machado, T., & Erlhagen, W. (2007). Object transportation by multiple mobile robots controlled by attractor dynamics: theory and implementation. In Proc. of the IEEE/RSJ intl. conf. on intelligent robots and systems (pp. 937–944). San Diego, CA. Google Scholar
  67. Steinhage, A. (1997). Dynamical systems for the generation of navigation behavior. PhD thesis, Ruhr-Universitat Bochum, Germany. Google Scholar
  68. Sudsang, A. (2002). Sweeping the floor: moving multiple objects with multiple disc-shaped robots. In Proc. of the IEEE/RSJ intl. conf. on intelligent robots and systems (pp. 2825–2830). Lausanne, Switzerland. Google Scholar
  69. Vidal, R., Shakernia, O., & Sastry, S. (2003). Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation. In IEEE conf. on robotics and automation (pp. 584–589). Taipei, Taiwan. Google Scholar
  70. Yamaguchi, H. (1999). A cooperative hunting behavior by mobile-robot troops. The International Journal of Robotics Research, 18(8), 931–940. CrossRefGoogle Scholar
  71. Young, B., Beard, R., & Kelsey, J. (2001). A control scheme for improving multi-vehicle formation maneuvers. In Proc. of the American control conf. (pp. 704–709). Arlington, VA. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dep. Industrial ElectronicsUniversity of MinhoGuimaresPortugal

Personalised recommendations