Autonomous Robots

, Volume 28, Issue 4, pp 439–455 | Cite as

Self-assembly strategies in a group of autonomous mobile robots

  • Rehan O’Grady
  • Roderich Groß
  • Anders Lyhne Christensen
  • Marco Dorigo
Article

Abstract

Robots are said to be capable of self-assembly when they can autonomously form physical connections with each other. By examining different ways in which a system can use self-assembly (i.e., different strategies), we demonstrate and quantify the performance costs and benefits of (i) acting as a physically larger self-assembled entity, (ii) letting the system choose when and if to self-assemble, (iii) coordinating the sensing and actuation of the connected robots so that they respond to the environment as a single collective entity. Our analysis is primarily based on real world experiments in a hill crossing task. The configuration of the hill is not known by the robots in advance—the hill can be present or absent, and can vary in steepness and orientation. In some configurations, the robots can overcome the hill more quickly by navigating individually, while other configurations require the robots to self-assemble to overcome the hill. We demonstrate the applicability of our self-assembly strategies to two other tasks—hole crossing and robot rescue—for which we present further proof-of-concept experiments with real robots.

Keywords

Self-assembly All-terrain navigation Cooperation Autonomous robots Modular robots Swarm robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

3SbotsCrossHill (WMV 5.33 MB)

2SbotsFailToCrossHill (WMV 2.81 MB)

2CoordinatedSbotsCrossHill (WMV 3.84 MB)

6SbotsCrossHill (WMV 4.33 MB)

6SbotsCrossHill2Groups (WMV 3.86 MB)

3CoordinatedSbotsCrossHill (WMV 2.87 MB)

3SbotsCross2cmHole (WMV 1.07 MB)

3SbotsCross10cmHole (WMV 2.76 MB)

2SbotsRescue2Sbots (WMV 3.81 MB)

2SbotsRescueSwarmbot (WMV 4.63 MB)

2ReconfiguringSbotsRescueSwarmbot (WMV 6.83 MB)

References

  1. Anderson, C., Theraulaz, G., & Deneubourg, J.-L. (2002). Self-assemblages in insect societies. Insectes Sociaux, 49(2), 99–110. CrossRefGoogle Scholar
  2. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. New York: Oxford University Press. MATHGoogle Scholar
  3. Brown Jr., H. B., Weghe, J. M. V., Weghe, E., Bererton, C. A., & Khosla, P. K. (2002). Millibot trains for enhanced mobility. IEEE/ASME Transactions on Mechatronics, 7(4), 452–461. CrossRefGoogle Scholar
  4. Campbell, J., & Pillai, P. (2008). Collective actuation. International Journal of Robotics Research, 27(3–4), 299–314. Google Scholar
  5. Cao, Y. U., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 4(1), 7–27. CrossRefGoogle Scholar
  6. Caspar, D. L. D. (1966). Design principles in organized biological structures. In Wolstenholme, G. E. W., & O’Connor, M. (Eds.), Principles of biomolecular organization (pp. 7–34). London: Churchill. CrossRefGoogle Scholar
  7. Castano, A., Behar, A., & Will, P. M. (2002). The Conro modules for reconfigurable robots. IEEE/ASME Transactions on Mechatronics, 7(4), 403–409. CrossRefGoogle Scholar
  8. Christensen, A. L., O’Grady, R., & Dorigo, M. (2008). SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intelligence, 2(2–4), 143–165. CrossRefGoogle Scholar
  9. Dorigo, M. (2009). The swarmanoid project. http://www.swarmanoid.org.
  10. Fukuda, T., & Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55–72. CrossRefGoogle Scholar
  11. Funiak, S., Pillai, P., Ashley-Rollman, M. P., Campbell, J. D., & Goldstein, S. C. (2009). Distributed localization of modular robot ensembles. International Journal of Robotics Research, 28(8), 946–961. CrossRefGoogle Scholar
  12. Goldstein, S. C., Campbell, J. D., & Mowry, T. C. (2005). Programmable matter. Computer, 38(6), 99–101. CrossRefGoogle Scholar
  13. Groß, R., & Dorigo, M. (2004). Group transport of an object to a target that only some group members may sense. In Lecture notes in computer science : Vol. 3242. Parallel problem solving from nature—8th international conference (PPSN VIII) (pp. 852–861). Berlin: Springer. Google Scholar
  14. Groß, R., & Dorigo, M. (2008a). Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling. Adaptive Behavior, 16(5), 285–305. CrossRefGoogle Scholar
  15. Groß, R., & Dorigo, M. (2008b). Self-assembly at the macroscopic scale. Proceedings of the IEEE, 96(9), 1490–1508. CrossRefGoogle Scholar
  16. Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006a). Autonomous self-assembly in swarm-bots. IEEE Transactions on Robotics, 22(6), 1115–1130. CrossRefGoogle Scholar
  17. Groß, R., Tuci, E., Dorigo, M., Bonani, M., & Mondada, F. (2006b). Object transport by modular robots that self-assemble. In Proceedings of the 2006 IEEE international conference on robotics and automation (pp. 2558–2564). Los Alamitos: IEEE Computer Society Press. CrossRefGoogle Scholar
  18. Hirose, S. (1993). Biologically inspired robots: snake-like locomotors and manipulators. New York: Oxford University Press. Google Scholar
  19. Hirose, S., Shirasu, T., & Fukushima, E. F. (1996). Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robots and Autonomous Systems, 17(1–2), 107–118. CrossRefGoogle Scholar
  20. Ishiguro, A., Shimizu, M., & Kawakatsu, T. (2004). Don’t try to control everything!: an emergent morphology control of a modular robot. In Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 981–985). Los Alamitos: IEEE Computer Society Press. Google Scholar
  21. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., & Kokaji, S. (2005). Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Transactions on Mechatronics, 10(3), 314–325. CrossRefGoogle Scholar
  22. Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., & Dorigo, M. (2004). SWARM-BOT: a new distributed robotic concept. Autonomous Robots, 17(2–3), 193–221. CrossRefGoogle Scholar
  23. Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., & Floreano, D. (2005). Superlinear physical performances in a SWARM-BOT. In Lecture notes in artificial intelligence : Vol. 3630. 8th European conference on artificial life, ECAL 2005 (pp. 282–291). Berlin: Springer. Google Scholar
  24. Mumm, E., Farritor, S., Pirjanian, P., Leger, C., & Schenker, P. (2004). Planetary cliff descent using cooperative robots. Autonomous Robots, 16(3), 259–272. CrossRefGoogle Scholar
  25. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., & Kokaji, S. (2002). M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics, 7(4), 431–441. CrossRefGoogle Scholar
  26. O’Grady, R., Groß, R., Mondada, F., Bonani, M., & Dorigo, M. (2005). Self-assembly on demand in a group of physical autonomous mobile robots navigating rough terrain. In Lecture notes in artificial intelligence : Vol. 3630. 8th European conference on artificial life, ECAL 2005 (pp. 272–281). Berlin: Springer. Google Scholar
  27. O’Grady, R., Christensen, A. L., & Dorigo, M. (2009a). SWARMORPH: multi-robot morphogenesis using directional self-assembly. IEEE Transactions on Robotics, 25, 738–743. Google Scholar
  28. O’Grady, R., Groß, R., Christensen, A. L., & Dorigo, M. (2009b). Distributed control to implement self-assembly strategies for the hill crossing task (Technical Report TR/IRIDIA/2009-022). IRIDIA, Faculté des Sciences Appliquées, Université Libre de Bruxelles. Google Scholar
  29. O’Grady, R., Pinciroli, C., Groß, R., Christensen, A. L., & Dorigo, M. (2009c, in press). Swarm-bots to the rescue. In Proceedings of the 10th European conference on artificial life, ECAL 2009. Berlin: Springer. Google Scholar
  30. O’Grady, R., Groß, R., Christensen, A. L., & Dorigo, M. (2010). Self assembly strategies in a group of autonomous mobile robots—support page. http://iridia.ulb.ac.be/supp/IridiaSupp2008-016/.
  31. Østergaard, E. H., Kassow, K., Beck, R., & Lund, H. H. (2006). Design of the ATRON lattice-based self-reconfigurable robot. Autonomous Robots, 21(2), 165–183. CrossRefGoogle Scholar
  32. Penrose, L. S., & Penrose, R. (1957). A self-reproducing analogue. Nature, 179(4571), 1183. CrossRefGoogle Scholar
  33. Sendova-Franks, A. B., & Franks, N. R. (1999). Self-assembly, self-organization and division of labour. Philosophical Transactions Royal Society B, 354(1388), 1395–1405. CrossRefGoogle Scholar
  34. Shen, W.-M., Will, P., Galstyanm, A., & Chuong, C.-M. (2004). Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robots, 17(1), 93–105. CrossRefGoogle Scholar
  35. Shen, W.-M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., & Venkatesh, J. (2006). Multimode locomotion for reconfigurable robots. Autonomous Robots, 20(2), 165–177. CrossRefGoogle Scholar
  36. Trianni, V., Tuci, E., & Dorigo, M. (2004). Evolving functional self-assembling in a swarm of autonomous robots. In Proceedings of the 8th international conference on the simulation of adaptive behavior (pp. 405–414). Cambridge: MIT Press. Google Scholar
  37. Tuci, E., Groß, R., Trianni, V., Mondada, F., Bonani, M., & Dorigo, M. (2006). Cooperation through self-assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems, 1(2), 115–150. CrossRefGoogle Scholar
  38. Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295(5564), 2418–2421. CrossRefGoogle Scholar
  39. Yamakita, M., Taniguchi, Y., & Shukuya, Y. (2003). Analysis of formation control of cooperative transportation of mother ship by SMC. In Proceedings of the 2003 IEEE international conference on robotics and automation (Vol. 1, pp. 951–956). Los Alamitos: IEEE Computer Society Press. Google Scholar
  40. Yim, M. (1994). Locomotion with a unit-modular reconfigurable robot. PhD thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA. Google Scholar
  41. Yim, M., Duff, D. G., & Roufas, K. D. (2000). PolyBot: A modular reconfigurable robot. In Proceedings of the 2000 IEEE international conference on robotics and automation (Vol. 1, pp. 514–520). Los Alamitos: IEEE Computer Society Press. Google Scholar
  42. Yim, M., Duff, D., & Zhang, Y. (2001). Closed-chain motion with large mechanical advantage. In Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 318–323). Los Alamitos: IEEE Computer Society Press. Google Scholar
  43. Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., & Homans, S. B. (2003). Modular reconfigurable robots in space applications. Autonomous Robots, 14(2–3), 225–237. MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rehan O’Grady
    • 1
  • Roderich Groß
    • 2
  • Anders Lyhne Christensen
    • 3
  • Marco Dorigo
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium
  2. 2.ACSEThe University of SheffieldSheffieldUK
  3. 3.Instituto de TelecomunicaçõesLisbonPortugal

Personalised recommendations