Advertisement

Self-assembly strategies in a group of autonomous mobile robots

Abstract

Robots are said to be capable of self-assembly when they can autonomously form physical connections with each other. By examining different ways in which a system can use self-assembly (i.e., different strategies), we demonstrate and quantify the performance costs and benefits of (i) acting as a physically larger self-assembled entity, (ii) letting the system choose when and if to self-assemble, (iii) coordinating the sensing and actuation of the connected robots so that they respond to the environment as a single collective entity. Our analysis is primarily based on real world experiments in a hill crossing task. The configuration of the hill is not known by the robots in advance—the hill can be present or absent, and can vary in steepness and orientation. In some configurations, the robots can overcome the hill more quickly by navigating individually, while other configurations require the robots to self-assemble to overcome the hill. We demonstrate the applicability of our self-assembly strategies to two other tasks—hole crossing and robot rescue—for which we present further proof-of-concept experiments with real robots.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

References

  1. Anderson, C., Theraulaz, G., & Deneubourg, J.-L. (2002). Self-assemblages in insect societies. Insectes Sociaux, 49(2), 99–110.

  2. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. New York: Oxford University Press.

  3. Brown Jr., H. B., Weghe, J. M. V., Weghe, E., Bererton, C. A., & Khosla, P. K. (2002). Millibot trains for enhanced mobility. IEEE/ASME Transactions on Mechatronics, 7(4), 452–461.

  4. Campbell, J., & Pillai, P. (2008). Collective actuation. International Journal of Robotics Research, 27(3–4), 299–314.

  5. Cao, Y. U., Fukunaga, A. S., & Kahng, A. B. (1997). Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 4(1), 7–27.

  6. Caspar, D. L. D. (1966). Design principles in organized biological structures. In Wolstenholme, G. E. W., & O’Connor, M. (Eds.), Principles of biomolecular organization (pp. 7–34). London: Churchill.

  7. Castano, A., Behar, A., & Will, P. M. (2002). The Conro modules for reconfigurable robots. IEEE/ASME Transactions on Mechatronics, 7(4), 403–409.

  8. Christensen, A. L., O’Grady, R., & Dorigo, M. (2008). SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intelligence, 2(2–4), 143–165.

  9. Dorigo, M. (2009). The swarmanoid project. http://www.swarmanoid.org.

  10. Fukuda, T., & Nakagawa, S. (1988). Approach to the dynamically reconfigurable robotic system. Journal of Intelligent and Robotic Systems, 1(1), 55–72.

  11. Funiak, S., Pillai, P., Ashley-Rollman, M. P., Campbell, J. D., & Goldstein, S. C. (2009). Distributed localization of modular robot ensembles. International Journal of Robotics Research, 28(8), 946–961.

  12. Goldstein, S. C., Campbell, J. D., & Mowry, T. C. (2005). Programmable matter. Computer, 38(6), 99–101.

  13. Groß, R., & Dorigo, M. (2004). Group transport of an object to a target that only some group members may sense. In Lecture notes in computer science : Vol. 3242. Parallel problem solving from nature—8th international conference (PPSN VIII) (pp. 852–861). Berlin: Springer.

  14. Groß, R., & Dorigo, M. (2008a). Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling. Adaptive Behavior, 16(5), 285–305.

  15. Groß, R., & Dorigo, M. (2008b). Self-assembly at the macroscopic scale. Proceedings of the IEEE, 96(9), 1490–1508.

  16. Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006a). Autonomous self-assembly in swarm-bots. IEEE Transactions on Robotics, 22(6), 1115–1130.

  17. Groß, R., Tuci, E., Dorigo, M., Bonani, M., & Mondada, F. (2006b). Object transport by modular robots that self-assemble. In Proceedings of the 2006 IEEE international conference on robotics and automation (pp. 2558–2564). Los Alamitos: IEEE Computer Society Press.

  18. Hirose, S. (1993). Biologically inspired robots: snake-like locomotors and manipulators. New York: Oxford University Press.

  19. Hirose, S., Shirasu, T., & Fukushima, E. F. (1996). Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robots and Autonomous Systems, 17(1–2), 107–118.

  20. Ishiguro, A., Shimizu, M., & Kawakatsu, T. (2004). Don’t try to control everything!: an emergent morphology control of a modular robot. In Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 981–985). Los Alamitos: IEEE Computer Society Press.

  21. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., & Kokaji, S. (2005). Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Transactions on Mechatronics, 10(3), 314–325.

  22. Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., & Dorigo, M. (2004). SWARM-BOT: a new distributed robotic concept. Autonomous Robots, 17(2–3), 193–221.

  23. Mondada, F., Bonani, M., Guignard, A., Magnenat, S., Studer, C., & Floreano, D. (2005). Superlinear physical performances in a SWARM-BOT. In Lecture notes in artificial intelligence : Vol. 3630. 8th European conference on artificial life, ECAL 2005 (pp. 282–291). Berlin: Springer.

  24. Mumm, E., Farritor, S., Pirjanian, P., Leger, C., & Schenker, P. (2004). Planetary cliff descent using cooperative robots. Autonomous Robots, 16(3), 259–272.

  25. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., & Kokaji, S. (2002). M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Transactions on Mechatronics, 7(4), 431–441.

  26. O’Grady, R., Groß, R., Mondada, F., Bonani, M., & Dorigo, M. (2005). Self-assembly on demand in a group of physical autonomous mobile robots navigating rough terrain. In Lecture notes in artificial intelligence : Vol. 3630. 8th European conference on artificial life, ECAL 2005 (pp. 272–281). Berlin: Springer.

  27. O’Grady, R., Christensen, A. L., & Dorigo, M. (2009a). SWARMORPH: multi-robot morphogenesis using directional self-assembly. IEEE Transactions on Robotics, 25, 738–743.

  28. O’Grady, R., Groß, R., Christensen, A. L., & Dorigo, M. (2009b). Distributed control to implement self-assembly strategies for the hill crossing task (Technical Report TR/IRIDIA/2009-022). IRIDIA, Faculté des Sciences Appliquées, Université Libre de Bruxelles.

  29. O’Grady, R., Pinciroli, C., Groß, R., Christensen, A. L., & Dorigo, M. (2009c, in press). Swarm-bots to the rescue. In Proceedings of the 10th European conference on artificial life, ECAL 2009. Berlin: Springer.

  30. O’Grady, R., Groß, R., Christensen, A. L., & Dorigo, M. (2010). Self assembly strategies in a group of autonomous mobile robots—support page. http://iridia.ulb.ac.be/supp/IridiaSupp2008-016/.

  31. Østergaard, E. H., Kassow, K., Beck, R., & Lund, H. H. (2006). Design of the ATRON lattice-based self-reconfigurable robot. Autonomous Robots, 21(2), 165–183.

  32. Penrose, L. S., & Penrose, R. (1957). A self-reproducing analogue. Nature, 179(4571), 1183.

  33. Sendova-Franks, A. B., & Franks, N. R. (1999). Self-assembly, self-organization and division of labour. Philosophical Transactions Royal Society B, 354(1388), 1395–1405.

  34. Shen, W.-M., Will, P., Galstyanm, A., & Chuong, C.-M. (2004). Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robots, 17(1), 93–105.

  35. Shen, W.-M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., & Venkatesh, J. (2006). Multimode locomotion for reconfigurable robots. Autonomous Robots, 20(2), 165–177.

  36. Trianni, V., Tuci, E., & Dorigo, M. (2004). Evolving functional self-assembling in a swarm of autonomous robots. In Proceedings of the 8th international conference on the simulation of adaptive behavior (pp. 405–414). Cambridge: MIT Press.

  37. Tuci, E., Groß, R., Trianni, V., Mondada, F., Bonani, M., & Dorigo, M. (2006). Cooperation through self-assembly in multi-robot systems. ACM Transactions on Autonomous and Adaptive Systems, 1(2), 115–150.

  38. Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295(5564), 2418–2421.

  39. Yamakita, M., Taniguchi, Y., & Shukuya, Y. (2003). Analysis of formation control of cooperative transportation of mother ship by SMC. In Proceedings of the 2003 IEEE international conference on robotics and automation (Vol. 1, pp. 951–956). Los Alamitos: IEEE Computer Society Press.

  40. Yim, M. (1994). Locomotion with a unit-modular reconfigurable robot. PhD thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.

  41. Yim, M., Duff, D. G., & Roufas, K. D. (2000). PolyBot: A modular reconfigurable robot. In Proceedings of the 2000 IEEE international conference on robotics and automation (Vol. 1, pp. 514–520). Los Alamitos: IEEE Computer Society Press.

  42. Yim, M., Duff, D., & Zhang, Y. (2001). Closed-chain motion with large mechanical advantage. In Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 318–323). Los Alamitos: IEEE Computer Society Press.

  43. Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., & Homans, S. B. (2003). Modular reconfigurable robots in space applications. Autonomous Robots, 14(2–3), 225–237.

Download references

Author information

Correspondence to Rehan O’Grady.

Electronic Supplementary Material

3SbotsCrossHill (WMV 5.33 MB)

2SbotsFailToCrossHill (WMV 2.81 MB)

2CoordinatedSbotsCrossHill (WMV 3.84 MB)

6SbotsCrossHill (WMV 4.33 MB)

6SbotsCrossHill2 Groups (WMV 3.86 MB)

3CoordinatedSbotsCrossHill (WMV 2.87 MB)

3SbotsCross2cmHole (WMV 1.07 MB)

3SbotsCross10cmHole (WMV 2.76 MB)

2SbotsRescue2 Sbots (WMV 3.81 MB)

2SbotsRescueSwarmbot (WMV 4.63 MB)

2ReconfiguringSbotsRescueSwarmbot (WMV 6.83 MB)

3SbotsCrossHill (WMV 5.33 MB)

2SbotsFailToCrossHill (WMV 2.81 MB)

2CoordinatedSbotsCrossHill (WMV 3.84 MB)

6SbotsCrossHill (WMV 4.33 MB)

6SbotsCrossHill2 Groups (WMV 3.86 MB)

3CoordinatedSbotsCrossHill (WMV 2.87 MB)

3SbotsCross2cmHole (WMV 1.07 MB)

3SbotsCross10cmHole (WMV 2.76 MB)

2SbotsRescue2 Sbots (WMV 3.81 MB)

2SbotsRescueSwarmbot (WMV 4.63 MB)

2ReconfiguringSbotsRescueSwarmbot (WMV 6.83 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O’Grady, R., Groß, R., Christensen, A.L. et al. Self-assembly strategies in a group of autonomous mobile robots. Auton Robot 28, 439–455 (2010) doi:10.1007/s10514-010-9177-0

Download citation

Keywords

  • Self-assembly
  • All-terrain navigation
  • Cooperation
  • Autonomous robots
  • Modular robots
  • Swarm robotics