Autonomous Robots

, Volume 28, Issue 3, pp 355–368 | Cite as

Minimalistic control of biped walking in rough terrain

  • Fumiya Iida
  • Russ Tedrake


Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the “phase locking” mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain.

Dynamic legged locomotion Biped robot Passive dynamics Compass gait model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamczyk, P. G., Collins, S. H., & Kuo, A. D. (2006). The advantages of a rolling foot in human walking. Journal of Experimental Biology, 209, 3953–3963. CrossRefGoogle Scholar
  2. Aoi, S., & Tsuchiya, K. (2005). Locomotion control of biped robot using nonlinear oscillators. Autonomous Robots, 19, 219–232. CrossRefGoogle Scholar
  3. Aoi, S., & Tsuchiya, K. (2006). Stability analysis of a simple walking model driven by an oscillator with a phase reset using sensory feedback. IEEE Transactions on Robotics, 22(2), 391–397. CrossRefGoogle Scholar
  4. Aoi, S., & Tsuchiya, K. (2007). Self-stability of a simple walking model driven by a rhythmic signal. Nonlinear Dynamics, 48(1), 1–16. zbMATHCrossRefMathSciNetGoogle Scholar
  5. Asano, F., Yamakita, M., & Furuta, K. (2000). Virtual passive dynamic walking and energy-based control laws. In IEEE/RSJ international conference on intelligent robots and systems (IROS 2000) (pp. 1149–1154). Google Scholar
  6. Asano, F., Yamakita, M., Kamamichi, N., & Luo, Z.-W. (2004). A novel gait generation for biped walking robots based on mechanical energy constraint. IEEE Transactions on Robotics and Automation, 20(3), 565–573. CrossRefGoogle Scholar
  7. Asano, F., Hayashi, T., Luo, Z. W., Hirano, S., & Kato, A. (2007). Parametric excitation approaches to efficient dynamic bipedal walking. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (pp. 2210–2216). Google Scholar
  8. Byl, K., & Tedrake, R. (2008a). Approximate optimal control of the compass gait on rough terrain. In Proceedings IEEE international conference on robotics and automation (ICRA) (pp. 1258–1263). Google Scholar
  9. Byl, K., & Tedrake, R. (2008b). Metastable walking machines. International Journal of Robotics Research, 28(8), 1040–1064. Google Scholar
  10. Collins, S. H., Wisse, M., & Ruina, A. (2001). A three-dimensional passive-dynamic walking robot with two legs and knees. International Journal of Robotics Research, 20, 607–615. CrossRefGoogle Scholar
  11. Collins, S. H., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307, 1082–1085. CrossRefGoogle Scholar
  12. Garcia, M., Chatterjee, A., Ruina, A., & Coleman, M. (1998). The simplest walking model: stability, complexity, and scaling. Journal of Biomechanical Engineering. Transactions of the ASME, 120(2), 281–288. CrossRefGoogle Scholar
  13. Goswami, A., Espiau, B., & Keramane, A. (1997). Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Autonomous Robots, 4, 273–286. CrossRefGoogle Scholar
  14. Goswami, A., Thuilot, B., & Espiau, B. (1998). A study of the passive gait of a compass-like biped robot: symmetry and chaos. International Journal of Robotics Research, 17(12), 1282–1301. CrossRefGoogle Scholar
  15. Harata, Y., Asano, F., Luo, Z. W., Taji, K., & Uno, Y. (2007). Biped gait generation based on parametric excitation by knee-joint actuation. In Proc. of the IEEE/RSJ int. conf. on intelligent robots and systems (pp. 2198–2203). Google Scholar
  16. Hass, J., Herrmann, J. M., & Geisel, T. (2006). Optimal mass distribution for passivity-based bipedal robots. International Journal of Robotics Research, 25(11), 1087–1098. CrossRefGoogle Scholar
  17. Hobbelen, D. G. E., & Wisse, M. (2008). Swing-leg retraction for limit cycle walkers improves disturbance rejection. IEEE Transactions on Robotics, 24(2), 377–389. CrossRefGoogle Scholar
  18. Iida, F., & Tedrake, R. (2009). Minimalistic control of a compass gait robot in rough terrain. In International conference on robotics and automation (ICRA 09) (pp. 1985–1990). Google Scholar
  19. Iida, F., Rummel, J., & Seyfarth, A. (2008). Bipedal walking and running with spring-like biarticular muscles. Journal of Biomechanics, 41, 656–667. CrossRefGoogle Scholar
  20. Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 21(4), 642–653. CrossRefGoogle Scholar
  21. Kajita, S., & Espiau, B. (2008). Legged robots. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics (pp. 361–389). Berlin: Springer. CrossRefGoogle Scholar
  22. Kim, J., Choi, C., & Spong, M. (2007). Passive dynamic walking with symmetric fixed flat feet. In International conference on control and automation (pp. 24–30). Google Scholar
  23. Kinugasa, T., Miwa, S., & Yoshida, K. (2008). Frequency analysis for biped walking via leg length variation. Robotics and Mechatronics, 20(1), 98–104. Google Scholar
  24. Kuo, A. D. (1999). Stabilization of lateral motion in passive dynamic walking. International Journal of Robotics Research, 18(9), 917–930. CrossRefGoogle Scholar
  25. Kuo, A. D. (2002). Energetics of actively powered locomotion using the simplest walking model. Journal of Biomechanical Engineering, 124, 113–120. CrossRefGoogle Scholar
  26. Kurz, M. J., & Stergiou, N. (2005). An artificial neural network that utilizes hip joint actuations to control bifurcations and chaos in a passive dynamic bipedal walking model. Biological Cybernetics, 93, 213–221. zbMATHCrossRefGoogle Scholar
  27. Kwan, M., & Hubbard, M. (2007). Optimal foot shape for a passive dynamic biped. Journal of Theoretical Biology, 248, 331–339. CrossRefGoogle Scholar
  28. Manchester, I. R., Mettin, U., Iida, F., & Tedrake, R. (2009, in press). Stable dynamic walking over rough terrain: theory and experiment. In Proceedings of the international symposium on robotics research (ISRR2009). Google Scholar
  29. Manoonpong, P., Geng, T., Kulvicius, T., Porr, B., & Wörgötter, F. (2007). Adaptive, fast walking in a biped robot under neuronal control and learning. PLoS Computational Biology, 3(7), 1305–1320. CrossRefGoogle Scholar
  30. McGeer, T. (1988). Stability and control of two-dimensional bipedal walking. Simon Fraser University CSS-ISS TR 88-01. Google Scholar
  31. McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2), 62–82. CrossRefGoogle Scholar
  32. Miyakoshi, S., & Cheng, G. (2004). Examining human walking characteristics with a telescopic compass-like biped walker model. In Proceedings of the IEEE international conference on systems, man and cybernetics (SMC2004) (pp. 1538–1543). Google Scholar
  33. Ono, K., Furuichi, T., & Takahashi, R. (2004). Self-excited walking of a biped mechanism with feet. International Journal of Robotics Research, 23(1), 55–68. CrossRefGoogle Scholar
  34. Pekarek, D., Ames, A. D., & Marsden, J. E. (2007). Discrete mechanics and optimal control applied to the compass gait biped. In Proceedings of IEEE conference on decision and control (pp. 5376–5382). Google Scholar
  35. Pratt, J., Chew, C.-M., Torres, A., Dilworth, P., & Pratt, G. (2001). Virtual model control: an intuitive approach for bipedal locomotion. International Journal of Robotics Research, 20(2), 129–143. CrossRefGoogle Scholar
  36. Spong, M. W. (2003). Passivity based control of the compass gait biped. In IFAC world congress (pp. 19–24). Google Scholar
  37. Spong, M. W., & Bhatia, G. (2003). Further results on control of the compass gait biped. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (pp. 1933–1938). Google Scholar
  38. Su, J. L.-S., & Dingwell, J. B. (2007). Dynamic stability of passive dynamic walking on an irregular surface. ASME Journal of Biomechanical Engineering, 129(6), 802–810. CrossRefGoogle Scholar
  39. Taga, G., Yamaguchi, Y., & Shimizu, H. (1991). Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics, 65, 147–159. zbMATHCrossRefGoogle Scholar
  40. Tedrake, R. (2004). Applied optimal control for dynamically stable legged locomotion. PhD thesis, Massachusetts Institute of Technology. Google Scholar
  41. Tedrake, R., Zhang, T. W., & Seung, H. S. (2004). Stochastic policy gradient reinforcement learning on a simple 3D biped. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (Vol. 3, pp. 2849–2854). Google Scholar
  42. van der Linde, R. Q. (1999). Passive bipedal walking with phasic muscle contraction. Biological Cybernetics, 81, 227–237. zbMATHCrossRefGoogle Scholar
  43. Wisse, M., & van Frankenhuyzen, J. (2003). Design and construction of MIKE: a 2D autonomous biped based on passive dynamic walking. In Proceedings of international symposium of adaptive motion and animals and machines (AMAM03). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Robotics and Intelligent SystemsSwiss Federal Institute of Technology ZurichZurichSwitzerland
  2. 2.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations