Autonomous Robots

, Volume 28, Issue 3, pp 295–306 | Cite as

Steerable miniature jumping robot

  • Mirko Kovač
  • Manuel Schlegel
  • Jean-Christophe Zufferey
  • Dario Floreano
Article

Abstract

Jumping is used in nature by many small animals to locomote in cluttered environments or in rough terrain. It offers small systems the benefit of overcoming relatively large obstacles at a low energetic cost. In order to be able to perform repetitive jumps in a given direction, it is important to be able to upright after landing, steer and jump again. In this article, we review and evaluate the uprighting and steering principles of existing jumping robots and present a novel spherical robot with a mass of 14 g and a size of 18 cm that can jump up to 62 cm at a take-off angle of 75°, recover passively after landing, orient itself, and jump again. We describe its design details and fabrication methods, characterize its jumping performance, and demonstrate the remote controlled prototype repetitively moving over an obstacle course where it has to climb stairs and go through a window. (See videos 1–4 in the electronic supplementary material.)

Jumping robots Bioinspired locomotion mobile robot Space robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

Below is the link to the electronic supplementary material. (MPG 17.173 MB)

10514_2009_9173_MOESM2_ESM.m1v (14.6 mb)
Below is the link to the electronic supplementary material. (M1V 14.984 MB)
10514_2009_9173_MOESM3_ESM.m1v (10.9 mb)
Below is the link to the electronic supplementary material. (M1V 11.153 MB)
10514_2009_9173_MOESM4_ESM.m1v (28.3 mb)
Below is the link to the electronic supplementary material. (M1V 29.015 MB)

References

  1. Alexander, R. M. (1988). Elastic mechanisms in animal movement. Cambridge: Cambridge University Press. Google Scholar
  2. Alexander, R. M. (2003). Principles of animal locomotion. Princeton: Princeton University Press. Google Scholar
  3. Armour, R., Paskins, K., Bowyer, A., Vincent, J. F. V., & Megill, W. (2007). Jumping robots: a biomimetic solution to locomotion across rough terrain. Bioinspiration and Biomimetics Journal, 2, 65–82. CrossRefGoogle Scholar
  4. Bennet-Clark, H. C. (1975). The energetics of the jump of the locust Schistocerca gregaria. Journal of Experimental Biology, 63(1), 53–83. Google Scholar
  5. Brackenbury, J., & Hunt, H. (1993). Jumping in springtails: mechanism and dynamics. Journal of Zoology, 229, 217–236. CrossRefGoogle Scholar
  6. Burdick, J., & Fiorini, P. (2003). Minimalist jumping robot for celestial exploration. The International Journal of Robotics Research, 22(7), 653–674. CrossRefGoogle Scholar
  7. Burrows, M. (2003). Biomechanics: Froghopper insects leap to new heights. Nature, 424(6948), 509. CrossRefGoogle Scholar
  8. Card, G., & Dickinson, M. (2008). Performance trade-offs in the flight initiation of drosophila. Journal of Experimental Biology, 211(3), 341. CrossRefGoogle Scholar
  9. Faisal, A. (2001). Coordinated righting behaviour in locusts. Journal of Experimental Biology, 204(4), 637–648. Google Scholar
  10. Frantsevich, L. (2004). Righting kinematics in beetles (insecta: Coleoptera). Arthropod Structure and Development, 33(3), 221–235. CrossRefGoogle Scholar
  11. Gronenberg, W. (1996). Fast actions in small animals: springs and click mechanisms. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 178(6), 727–734. Google Scholar
  12. Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods. New York: Wiley. MATHGoogle Scholar
  13. Kaspari, M., & Weiser, M. D. (1999). The sizegrain hypothesis and interspecific scaling in ants. Functional Ecology, 13(4), 530–538. CrossRefGoogle Scholar
  14. Kovac, M., Guignard, A., Nicoud, J. D., Zufferey, J. C., & Floreano, D. (2007). A 1.5 g sma-actuated microglider looking for the light. In IEEE international conference on robotics and automation, pp. 367–372. Google Scholar
  15. Kovac, M., Fuchs, M., Guignard, A., Zufferey, J., & Floreano, D. (2008). A miniature 7 g jumping robot. In IEEE international conference on robotics and automation, pp. 373–378. Google Scholar
  16. Kovac, M., Schlegel, M., Zufferey, J. C., & Floreano, D. (2009a). A miniature jumping robot with self-recovery capabilities. In IEEE/RSJ international conference on robotics and automation, pp. 583–588. Google Scholar
  17. Kovac, M., Zufferey, J., & Floreano, D. (2009b). Towards a self-deploying and gliding robot. In Floreano, D., Zufferey, J. C., Srinivasan, M. V., & Ellington, C. (Eds.), Flying insects and robots Berlin: Springer, Chap. 19. Google Scholar
  18. Lambrecht, B. G. A., Horchler, A. D., & Quinn, R. D. (2005). A small, insect-inspired robot that runs and jumps. In IEEE/RSJ international conference on robotics and automation, pp. 1240–1245. Google Scholar
  19. Roberts, T. J., & Marsh, R. L. (2003). Probing the limits to muscle-powered accelerations: lessons from jumping bullfrogs. Journal of Experimental Biology, 206(15), 2567–2580. CrossRefGoogle Scholar
  20. Scarfogliero, U., Stefanini, C., & Dario, P. (2007). Design and development of the long-jumping “grillo” mini robot. In IEEE international conference on robotics and automation, pp. 467–472. Google Scholar
  21. Stoeter, S. A., Rybski, P. E., & Papanikolopoulos, N. (2002). Autonomous stair-hopping with scout robots. In IEEE/RSJ international conference on intelligent robots and systems, Vol. 1, pp. 721–726. Google Scholar
  22. Sugiyama, Y., Yamanaka, M., & Hirai, S. (2005). Circular/spherical robots for crawling and jumping. In IEEE international conference on robotics and automation, pp. 3595–3600. Google Scholar
  23. Tsukagoshi, H., Sasaki, M., Kitagawa, A., & Tanaka, T. (2005). Design of a higher jumping rescue robot with the optimized pneumatic drive. In IEEE international conference on robotics and automation, pp. 1276–1283. Google Scholar
  24. Ullman, D. G. (2002). The mechanical design process. New York: McGraw-Hill. Google Scholar
  25. Weiss, P. (2001). Hop… hop… hopbots!: designers of small, mobile robots take cues from grasshoppers and frogs. Science News, 159, 88. CrossRefGoogle Scholar
  26. Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., & Homans, S. (2003). Modular reconfigurable robots in space applications. Autonomous Robots, 14(2), 225–237. MATHCrossRefGoogle Scholar
  27. Zufferey, J. C., Klaptocz, A., Beyeler, A., Nicoud, J. D., & Floreano, D. (2007). A 10-gram vision-based flying robot. Advanced Robotics, 21(14), 1671–1684. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mirko Kovač
    • 1
  • Manuel Schlegel
    • 1
  • Jean-Christophe Zufferey
    • 1
  • Dario Floreano
    • 1
  1. 1.Laboratory of Intelligent SystemsEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations