Autonomous Robots

, 28:231 | Cite as

Accurate tracking of legged robots on natural terrain

  • J. A. Cobano
  • J. Estremera
  • P. Gonzalez de SantosEmail author


Statically stable walking locomotion research has focused mainly on robot design and gait generation. However, there is a need to expand robots’ capabilities so that walking machines can accomplish the kinds of real tasks for which they are eminently suited. Many such tasks demand trajectory tracking, but researchers have traditionally ignored this subject. This article focuses on the tracking of predefined trajectories with hexapod robots walking on natural terrain with forbidden zones. The method presented herein, which relies on gait algorithms defined elsewhere, describes certain localization strategies and control techniques that have been employed to follow trajectories accurately and have been implemented in a real walking hexapod. Several experimental examples are included to assess the proposed algorithms.

Walking robots Legged robots Trajectory tracking Humanitarian demining 


  1. Acar, E., & Choset, H. (2001). Robust sensor-based coverage of unstructured environments. In Proceedings of the international conference on intelligent robots and systems, Maui, Hawaii, pp. 61–68. Google Scholar
  2. Bai, S., & Low, K. H. (2001). Body trajectory generation for legged locomotion systems using a terrain evaluation approach. In Proceedings of the 2001 IEEE international conference on robotics and automation, Seoul, Korea, May 21–26, pp. 2279–2284. Google Scholar
  3. Catalbiano, D., Muscato, G., & Russo, F. (2004). Localization and self calibration of a robot for volcano exploration. In Proc. IEEE int. conf. on robotics and automation, pp. 586–591. New Orleans, LA. Google Scholar
  4. Choset, H., & Pignon, P. (1997). Coverage path planning: the boustrophedon cellular decomposition. In Proceedings of the international conference on field and service robotics, Canberra, Australia. Google Scholar
  5. Cobano, J. A. (2007). Localization and trajectory tracking with walking robots in natural environments. Ph.D. Thesis, University Complutense of Madrid. Google Scholar
  6. Cobano, J. A., Estremera, J., & Gonzalez de Santos, P. (2008). Location of legged robots in outdoor environment. Robotics and Autonomous Systems, 56, 751–761. CrossRefGoogle Scholar
  7. Estremera, J., & Gonzalez de Santos, P. (2002). Free gaits for quadruped robots over irregular terrain. The International Journal of Robotics Research, 21(2), 115–130. CrossRefGoogle Scholar
  8. Estremera, J., & Gonzalez de Santos, P. (2005). Generating continuous free crab gaits for quadruped robots on irregular terrain. IEEE Transactions on Robotics, 21(6), 1067–1076. CrossRefGoogle Scholar
  9. Estremera, J., Cobano, J. A., & Gonzalez de Santos, P. (2010, in press). Continuous free-crab gaits for hexapod robots on natural terrain with forbidden zones: an application to humanitarian demining. Robotics and Autonomous Systems. doi: 10.1016/j.robot.2009.11.004
  10. Garcia, E., & Gonzalez de Santos, P. (2004). Mobile robot navigation with complete coverage of unstructured environments. Robotics and Autonomous Systems, 46(4), 195–204. CrossRefGoogle Scholar
  11. Gassmann, B., Zacharias, F., Zöllner, J. M., & Dillmann, R. (2005). Localization of walking robots. In Proceedings of the 2005 IEEE, international conference on robotics and automation, pp. 1483–1488. Barcelona, Spain. Google Scholar
  12. Gelb, A., Kasper, Jr., J. F., Nash, Jr., R. A., Price, C. F., & Sutherland, Jr., A. A. (1986). Applied optimal estimation. Cambridge: MIT. Google Scholar
  13. Gonzalez de Santos, P., & Jimenez, M. A. (1995a). Generation of discontinuous gaits for quadruped walking machines. Journal of Robotic Systems, 12(9), 599–611. zbMATHCrossRefGoogle Scholar
  14. Gonzalez de Santos, P., & Jimenez, M. A. (1995b). Path tracking with quadruped walking machines using discontinuous gaits. Computers and Electrical Engineering, 21(6), 382–396. Google Scholar
  15. Gonzalez de Santos, P., Cobano, J. A., Garcia, E., Estremera, J., & Armada, M. A. (2007). A six-legged-robot based system for humanitarian demining missions. Mechatronics, 17, 417–430. CrossRefGoogle Scholar
  16. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Transaction of the ASME-Journal of Basic Engineering, 82, 35–45. Google Scholar
  17. Lee, J. K., & Song, S. M. (1990). Path planning and gait of walking machine in an obstacle-strewn environment. Journal of Robotic Systems, 12(3), 801–827. MathSciNetGoogle Scholar
  18. Longo, D., Muscato, G., & Sacco, V. (2002). Localization using fuzzy and Kalman filtering data fusion. In Proc. int. conf. climbing and walking robots, Paris, France. Google Scholar
  19. Molfino, R., Armada, M., Cepolina, F., & Zoppi, M. (2005). ROBOCLIMBER the 3 ton spider. Industrial Robot, 32(2), 163–170. CrossRefGoogle Scholar
  20. Orin, D. (1982). Supervisory control of a multilegged robot. The International Journal of Robotic Research, 1(1), 79–91. CrossRefGoogle Scholar
  21. Roumeliotis, S. I., & Bekey, G. A. (1997). An extended Kalman filter for frequent local and infrequent global sensor data fusion. In Proceedings of the SPIE (sensor fusion and decentralized control in autonomous robotic systems), pp. 11–22. Pittsburgh, Pennsylvania. Google Scholar
  22. SILO-6 (2008a). The SILO-6 and DYLEMA Projects’ Home Page. Available at:
  23. SILO-6 (2008b). The SILO-6 and DYLEMA Projects’ videos. Available at
  24. Welch, G., & Bishop, G. (2004). An introduction to the Kalman filter. Department of Computer Science, University of North Carolina, Chapel Hill. Google Scholar
  25. Zhang, F. (2007). Curve tracking control for legged locomotion. In Proceedings of the 2007 American control conference, New York, NY, July 11–13, pp. 2836–2841. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. A. Cobano
    • 1
  • J. Estremera
    • 1
  • P. Gonzalez de Santos
    • 1
    Email author
  1. 1.Department of Automatic ControlInstitute of Industrial Automation - CSICMadridSpain

Personalised recommendations