Autonomous Robots

, 28:5

HERB: a home exploring robotic butler

  • Siddhartha S. Srinivasa
  • Dave Ferguson
  • Casey J. Helfrich
  • Dmitry Berenson
  • Alvaro Collet
  • Rosen Diankov
  • Garratt Gallagher
  • Geoffrey Hollinger
  • James Kuffner
  • Michael Vande Weghe
Article

Abstract

We describe the architecture, algorithms, and experiments with HERB, an autonomous mobile manipulator that performs useful manipulation tasks in the home. We present new algorithms for searching for objects, learning to navigate in cluttered dynamic indoor scenes, recognizing and registering objects accurately in high clutter using vision, manipulating doors and other constrained objects using caging grasps, grasp planning and execution in clutter, and manipulation on pose and torque constraint manifolds. We also present numerous severe real-world test results from the integration of these algorithms into a single mobile manipulator.

Mobile manipulation Personal robotics Robotic manipulation Computer vision Search Navigation 

References

  1. Beis, J. S., & Lowe, D. G. (1997). Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. In Proc. IEEE conf. comp. vision patt. recog. (pp. 1000–1006). Google Scholar
  2. Berenson, D., & Srinivasa, S. (2008). Grasp synthesis in cluttered environments for dexterous hands. In IEEE-RAS international conference on humanoid robots. Google Scholar
  3. Berenson, D., Diankov, R., Nishiwaki, K., Kagami, S., & Kuffner, J. (2007). Grasp planning in complex scenes. In IEEE-RAS international conference on humanoid robots (Humanoids07). Google Scholar
  4. Berenson, D., Srinivasa, S., Ferguson, D., Collet, A., & Kuffner, J. (2009a). Manipulation planning with workspace goal regions. In IEEE international conference on robotics and automation. Google Scholar
  5. Berenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009b). Manipulation planning on constraint manifolds. In IEEE international conference on robotics and automation. Google Scholar
  6. Bradski, G., & Kaehler, A. (2008). Learning OpenCV: computer vision with the OpenCV library. New York: O’Reilly. Google Scholar
  7. Canine Companions (2009). Canine companions for independence. http://www.cci.org.
  8. Collet, A., Berenson, D., Srinivasa, S. S., & Ferguson, D. (2009). Object recognition and full pose registration from a single image for robotic manipulation. In IEEE international conference on robotics and automation. Google Scholar
  9. Diankov, R., & Kuffner, J. (2007). Randomized statistical path planning. In IEEE/RSJ international conference on intelligent robots and systems. Google Scholar
  10. Diankov, R., & Kuffner, J. (2008). Openrave: A planning architecture for autonomous robotics. Tech. Rep. CMU-RI-TR-08-34, Robotics Institute, Carnegie Mellon University. Google Scholar
  11. Diankov, R., Srinivasa, S., Ferguson, D., & Kuffner, J. (2008). Manipulation planning with caging grasps. In IEEE-RAS international conference on humanoid robots. Google Scholar
  12. Eaton, J. W. (2002). GNU Octave Manual. Network Theory Limited. Google Scholar
  13. Ekvall, S., Kragic, D., & Hoffmann, F. (2005). Object recognition and pose estimation using color cooccurrence histograms and geometric modeling. Image Vision Comput, 23(11), 943–955. CrossRefGoogle Scholar
  14. Exact Dynamics (2009). Arm: Assistive robotic manipulator. http://www.exactdynamics.nl.
  15. Gallagher, G., Srinivasa, S., Bagnell, D., & Ferguson, D. (2009). An online approach to object detection, modeling and mapping for mobile robots. In Proc. int’l conf. robotics and automation. Google Scholar
  16. Gordon, I., & Lowe, D. G. (2006). What and where: 3d object recognition with accurate pose. In Toward category-level object recognition (pp. 67–82). Google Scholar
  17. Hahnel, D., Triebel, R., Burgard, W., & Thrun, S. (2003). Map building with mobile robots in dynamic environments. In Proc. int’l conf. robotics and automation. Google Scholar
  18. Hollinger, G., Ferguson, D., Srinivasa, S., & Singh, S. (2009). Combining search and action for mobile robots. In Proc. int’l conf. robotics and automation. Google Scholar
  19. IRobot (2009). Roomba. http://www.irobot.com.
  20. Jain, A., & Kemp, C. C. (2008). Behaviors for robust door opening and doorway traversal with a force-sensing mobile manipulator. In Proceedings of the manipulation workshop in robotics science and systems. Google Scholar
  21. Katz, D., & Brock, O. (2008). Manipulating articulated objects with interactive perception. In IEEE international conference on robotics and automation. Google Scholar
  22. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110. CrossRefGoogle Scholar
  23. Loy, G., & Zelinsky, A. (2003). Fast radial symmetry for detecting points of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 959–973. CrossRefGoogle Scholar
  24. Mendes, A., Bento, X., & Nunes, L. (2004). Multi-target detection and tracking with a laser scanner. In Intelligent vehicles symposium. Google Scholar
  25. Mittrapiyanuruk, P., DeSouza, G. N., & Kak, A. C. (2004). Calculating the 3d-pose of rigid-objects using active appearance models. In IEEE international conference on robotics and automation (pp. 5147–5152). New York: IEEE. Google Scholar
  26. Monkey Helpers (2009). Helping hands: Monkey helpers for the disabled. http://www.monkeyhelpers.org.
  27. Montemerlo, M., & Thrun, S. (2002). Conditional particle filters for simultaneous mobile robot localization and people-tracking (slap). In Proc. int’l conf. robotics and automation. Google Scholar
  28. Muller, A., Kirsch, A., & Beetz, M. (2007). Transformational planning for everyday activity. In 17th international conference on automated planning and scheduling (pp. 248–255). Google Scholar
  29. Nguyen, H., Anderson, C., Trevor, A., Jain, A., Xu, Z., & Kemp, C. (2008). El-e: an assistive robot that fetches objects from flat surfaces. In Proc. human robot interaction, the robotics helpers workshop. Google Scholar
  30. Pereira, G. A. S., Kumar, V., & Campos, M. F. M. (2002). Decentralized algorithms for multirobot manipulation via caging. In Proceedings of the workshop on the algorithmic foundations of robotics. Google Scholar
  31. Prats, M., Sanz, P. J., & del Pobil, A. P. (2008). A sensor-based approach for physical interaction based on hand, grasp and task frames. In Proceedings of the manipulation workshop in robotics science and systems. Google Scholar
  32. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., & Ng, A. (2009). (ros): an open-source robot operating system. In ICRA workshop on open source software in robotics. Google Scholar
  33. Ray, C., Mondada, F., & Siegwart, R. (2001). What do people expect from robots? In Intelligent robots and systems, 2008 proceedings 2008 IEEE/RSJ international conference (pp. 3816–3821). Google Scholar
  34. Saxena, A., Driemeyer, J., & Ng, A. (2008). Robotic grasping of novel objects using vision. The International Journal of Robotics Research, 27(2), 157–173. CrossRefGoogle Scholar
  35. Schulz, D., & Burgard, W. (2001). People tracking with a mobile robot using sample-based joint probabilistic data association filters. Robotics and Autonomous Systems, 34(2–3), 107–115. MATHCrossRefGoogle Scholar
  36. Schulz, D., Burgard, W., Fox, D., & Cremers, A. (2003). People tracking with a mobile robot using sample-based joint probabilistic data association filters. The International Journal of Robotics Research, 22(2), 99–116. CrossRefGoogle Scholar
  37. Taylor, G., & Kleeman, L. (2003). Fusion of multimodal visual cues for modelbased object tracking. In Australasian conference on robotics and automation (ACRA2003), Brisbane, Australia. Google Scholar
  38. The personal robotics project (2008). http://pr.willowgarage.com.
  39. Vacchetti, L., Lepetit, V., & Fua, P. (2004). Stable real-time 3d tracking using online and offline information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1385–1391. doi:10.1109/TPAMI.2004.92. CrossRefGoogle Scholar
  40. Walter, J., & Arnrich, B. (2000). Gabor filters for object localization and robot grasping. In IEEE proceedings of the international conference on pattern recognition (p. 4124). Washington: IEEE Computer Society. Google Scholar
  41. Wang, C. C., & Thorpe, C. (2002). Simultaneous localization and mapping with detection and tracking of moving objects. In Proc. int’l conf. robotics and automation. Google Scholar
  42. Zerofrog (2008). Libsiftfast. http://sourceforge.net/projects/libsift.
  43. Zhang, J., Schmidt, R., & Knoll, A. (1999). Appearance-based visual learning in a neuro-fuzzy model for fine-positioning of manipulators. In IEEE international conference on robotics and automation (p. 1164). Google Scholar
  44. Zickler, S., & Veloso, M. (2006). Detection and localization of multiple objects. In Humanoid robots, 2006 6th IEEE-RAS international conference (pp. 20–25). doi:10.1109/ICHR.2006.321358.

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Siddhartha S. Srinivasa
    • 1
  • Dave Ferguson
    • 1
  • Casey J. Helfrich
    • 1
  • Dmitry Berenson
    • 2
  • Alvaro Collet
    • 2
  • Rosen Diankov
    • 2
  • Garratt Gallagher
    • 2
  • Geoffrey Hollinger
    • 2
  • James Kuffner
    • 2
  • Michael Vande Weghe
    • 2
  1. 1.Intel Research PittsburghPittsburghUSA
  2. 2.The Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations