Autonomous Robots

, 28:151

Reactive direction control for a mobile robot: a locust-like control of escape direction emerges when a bilateral pair of model locust visual neurons are integrated

  • Shigang Yue
  • Roger D. Santer
  • Yoshifumi Yamawaki
  • F. Claire Rind
Article

Abstract

Locusts possess a bilateral pair of uniquely identifiable visual neurons that respond vigorously to the image of an approaching object. These neurons are called the lobula giant movement detectors (LGMDs). The locust LGMDs have been extensively studied and this has lead to the development of an LGMD model for use as an artificial collision detector in robotic applications. To date, robots have been equipped with only a single, central artificial LGMD sensor, and this triggers a non-directional stop or rotation when a potentially colliding object is detected. Clearly, for a robot to behave autonomously, it must react differently to stimuli approaching from different directions. In this study, we implement a bilateral pair of LGMD models in Khepera robots equipped with normal and panoramic cameras. We integrate the responses of these LGMD models using methodologies inspired by research on escape direction control in cockroaches. Using ‘randomised winner-take-all’ or ‘steering wheel’ algorithms for LGMD model integration, the Khepera robots could escape an approaching threat in real time and with a similar distribution of escape directions as real locusts. We also found that by optimising these algorithms, we could use them to integrate the left and right DCMD responses of real jumping locusts offline and reproduce the actual escape directions that the locusts took in a particular trial. Our results significantly advance the development of an artificial collision detection and evasion system based on the locust LGMD by allowing it reactive control over robot behaviour. The success of this approach may also indicate some important areas to be pursued in future biological research.

Keywords

Robots Escape Emergent properties Behaviour Visual neural network LGMD DCMD Locusts Jumping Agents Hybrid Cybernetics 

References

  1. Adams, M. D. (1998). Sensor modelling, design and data processing for autonomous navigation. River Edge: World Scientific. Google Scholar
  2. Blanchard, M., Verschure, P. F. M. J., & Rind, F. C. (1999). Using a mobile robot to study locust collision avoidance responses. International Journal of Neural Systems, 9, 405–410. CrossRefGoogle Scholar
  3. Blanchard, M., Rind, F. C., & Verschure, P. F. M. J. (2000). Collision avoidance using a model of the locust LGMD neuron. Robotics and Autonomous Systems, 30, 17–38. CrossRefGoogle Scholar
  4. Camhi, J. M., Tom, W., & Volman, S. (1978). The escape behaviour of the cockroach Periplaneta Americana II. detection of natural predators by air displacement. Journal of Comparative Physiology A, 128, 203–212. CrossRefGoogle Scholar
  5. DeSouza, G. N., & Kak, A. C. (2002). Vision for mobile robot navigation: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 237–67. CrossRefGoogle Scholar
  6. Domenici, P., Booth, D., Blagburn, J. M., & Bacon, J. P. (2008). Cockroaches keep predators guessing by using preferred escape trajectories. Current Biology, 18, 1792–1796. CrossRefGoogle Scholar
  7. Eaton, R. C., Lavender, W. A., & Wieland, C. M. (1981). Identification of mauthner-initiated response patterns in goldfish: evidence from simultaneous cinematography and electrophysiology. Journal of Comparative Physiology, 144, 521–531. CrossRefGoogle Scholar
  8. Eaton, R. C., DiDomenico, R., & Nissanov, J. (1991). Role of the Mauthner cell in sensorimotor integration by the brain stem escape network. Brain Behavior and Evolution, 37, 272–285. CrossRefGoogle Scholar
  9. Everett, H. R. (1995). Sensors for mobile robots: theory and application. Wellesley: AK Peters. Google Scholar
  10. Ezrachi, E. A. (2003). Computational model of the cockroach escape behaviour: winner and losers in a population code. Biological Cybernetics, 88(1), 33–45. MATHCrossRefGoogle Scholar
  11. Ezrachi, E. A., Levi, R., Camhi, J. M., & Parnas, H. (1999). Right-left discrimination in a biologically oriented model of the cockroach escape system. Biological Cybernetics, 81(2), 89–99. CrossRefGoogle Scholar
  12. Fiala, M., & Basu, A. (2004). Robot navigation using panoramic tracking. Pattern Recognition, 37, 2195–2215. CrossRefGoogle Scholar
  13. Fotowat, H., & Gabbiani, F. (2007). Relationship between the phases of sensory and motor activity during a looming-evoked multistage escape behavior. The Journal of Neuroscience, 27, 10047–10059. CrossRefGoogle Scholar
  14. Gabbiani, F., & Krapp, H. G. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of Neurophysiology, 96(6), 2951–2962. CrossRefGoogle Scholar
  15. Gabbiani, F., Krapp, H. G., Hatsopoulos, N., Mo, C.-H., Koch, C., & Laurent, G. (2004). Multiplication and stimulus invariance in a looming-sensitive neuron. Journal of Physiology – Paris, 98, 19–34. CrossRefGoogle Scholar
  16. Gnatzy, W. (1996). Digger wasp vs. cricket: neuroethology of a predator-prey interaction. Information Processing in Animals, 10, 92. Google Scholar
  17. Harrison, R. R., & Koch, C. (2000). A silicon implementation of the fly’s optomotor control system. Neural Computation, 12, 2291–2304. CrossRefGoogle Scholar
  18. Hatsopoulos, N., Gabbiani, F., & Laurent, G. (1995). Elementary computation of object approach by a wide-field visual neuron. Science, 270, 1000–1003. CrossRefGoogle Scholar
  19. Horridge, G. A. (1978). The separation of visual axes in apposition compound eyes. Philosophical Transactions of the Royal Society London B: Biological Science, 285, 1–59. CrossRefGoogle Scholar
  20. Huber, S. A., Franz, M. O., & Buelthoff, H. H. (1999). On robots flies: modelling the visual orientating behaviour of flies. Robotics and Autonomous Systems, 29, 227–242. CrossRefGoogle Scholar
  21. Iida, F. (2003). Biologically inspired visual odometer for navigation of a flying robot. Robotics and Autonomous Systems, 44(3–4), 201–208. CrossRefGoogle Scholar
  22. Indiveri, G., & Douglas, R. (2000). Neuromorphic vision sensors. Science, 288, 1189–1190. CrossRefGoogle Scholar
  23. Krasne, F. B., & Lee, S. C. (1988). Response-dedicated trigger neurons as control points for behavioral actions: selective inhibition of lateral giant command neurons during feeding in crayfish. The Journal of Neuroscience, 8, 3703–3712. Google Scholar
  24. Levi, R., & Camhi, J. M. (2000a). Wind direction coding in the cockroach escape response: winner does not take all. The Journal of Neuroscience, 15:20(10), 3814–3821. Google Scholar
  25. Levi, R., & Camhi, J. M. (2000b). Population vector coding by the giant interneurons of the cockroach. The Journal of Neuroscience, 15:20(10), 3822–3829. Google Scholar
  26. Manduchi, R., Castano, A., Talukder, A., & Matthies, L. (2005). Obstacle detection and terrain classification for autonomous off-road navigation. Autonomous Robots, 18, 81–102. CrossRefGoogle Scholar
  27. Nishio, K., Yonezu, H., Kariyawasam, A. B., Yoshikawa, Y., Sawa, S., & Furukawa, Y. (2004). Analogy integrated circuit for motion detection against moving background based on the insect visual system. Optical Review, 11(1), 24–33. CrossRefGoogle Scholar
  28. O’Shea, M., Rowell, C. H. F., & Williams, J. L. D. (1974). The anatomy of a locust visual interneurone: The descending contralateral movement detector. Journal of Experimental Biology, 60, 1–12. Google Scholar
  29. Rind, F. C. (1984). A chemical synapse between two motion detecting neurones in the locust brain. Journal of Experimental Biology, 110, 143–167. Google Scholar
  30. Rind, F. C. (1987). Non-Directional, movement sensitive neurones of the locust optic lobe. Journal of Comparative Physiology, 161, 477–494. CrossRefGoogle Scholar
  31. Rind, F. C. (2002). Motion detectors in the locust visual system: from biology to robot sensors. Microscopy Research and Technique, 56, 256–269. CrossRefGoogle Scholar
  32. Rind, F. C. (2005). Bioinspired sensors: from insect eyes to robot vision. In T. A. Christensen (Ed.), Frontiers in neuroscience: methods in insect sensory neuroscience. Boca Raton, London, New York: CRC Press. Google Scholar
  33. Rind, F. C., & Bramwell, D. I. (1996). Neural network based on the input organization of an identified neuron signaling impending collision. Journal of Neurophysiology, 75, 967–985. Google Scholar
  34. Rind, F. C., & Simmons, P. J. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. Journal of Neurophysiology, 68, 1654–1666. Google Scholar
  35. Rind, F. C., & Simmons, P. J. (1999). Seeing what is coming: Building collision sensitive neurons. Trends in Neurosciences, 22, 215–220. CrossRefGoogle Scholar
  36. Rind, F. C., Santer, R. D. J., Blanchard, M., & Verschure, P. F. M. J. (2003). Locust’s looming detectors for robot sensors. In F. G. Barth, J. A. C. Humphrey & T. W. Secomb (Eds.), Sensors and sensing in biology and engineering. Wien, New York: Springer. Google Scholar
  37. Rind, F. C., Stafford, R., & Yue, S. (2004). Technical Report D11: Biological Model Report, Project IST-2001-38097, LOCUST: Life-like object detection for collision avoidance using spatiotemporal image processing. http://www.imse.cnm.es/locust/main.html.
  38. Roberts, A. (1968). Recurrent inhibition in the giant-fibre system of the crayfish and its effect on the excitability of the escape response. Journal of Experimental Biology, 48, 545–567. Google Scholar
  39. Salzman, C. D., & Newsome, W. T. (1994). Neural mechanisms for forming a perceptual decision. Science, 264, 231–237. CrossRefGoogle Scholar
  40. Santer, R. D., Stafford, R., & Rind, F. C. (2004). Retinally-generated saccadic suppression of a locust looming detector neuron: investigations using a robot locust. Journal of Royal Society London: Interface, 1, 61–77. CrossRefGoogle Scholar
  41. Santer, R. D., Simmons, P. J., & Rind, F. C. (2005a). Gliding behaviour elicited by lateral looming stimuli in flying locusts. Journal of Comparative Physiology, 191, 61–73. CrossRefGoogle Scholar
  42. Santer, R. D., Yamawaki, Y., Rind, F. C., & Simmons, P. J. (2005b). Motor activity and trajectory control during escape jumping in the locust Locusta migratoria. Journal of Comparative Physiology, 191, 965–975. CrossRefGoogle Scholar
  43. Santer, R. D., Yamawaki, Y., Rind, F. C., & Simmons, P. J. (2008). Preparing for escape: an examination of the role of the DCMD neuron in locust escape jumps. Journal of Comparative Physiology A, 194(1), 69–77. CrossRefGoogle Scholar
  44. Schlotterer, G. R. (1977). Response of the locust descending contralateral movement detector neuron to rapidly approaching and withdrawing visual stimuli. Canadian Journal of Zoology, 55, 1372–1376. CrossRefGoogle Scholar
  45. Simmons, P. J. (1980). Connexions between a movement-detecting visual interneurone and flight motoneurones of a locust. Journal of Experimental Biology, 86, 87–97. Google Scholar
  46. Simmons, P. J., & Rind, F. C. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. II. Critical cues for detecting approaching objects. Journal of Neurophysiology, 68, 1667–1682. Google Scholar
  47. Simmons, P. J., & Rind, F. C. (1997). Responses to object approach by a wide field visual neurone, the LGMD2 of the locust: characterization and image cues. Journal of Comparative Physiology, 180, 203–214. CrossRefGoogle Scholar
  48. Stafford, R., & Rind, F. C. (2007). Data mining neural spike-trains for the identification of behavioural triggers using evolutionary algorithms. Neurocomputing, 70, 1079–1084. CrossRefGoogle Scholar
  49. Stafford, R., Santer, R. D., & Rind, F. C. (2007). A bio-inspired visual collision detection mechanism for cars: combining insect inspired neurons to create a robust system. BioSystems, 87, 162–169. CrossRefGoogle Scholar
  50. Stern, M., & Gewecke, M. (1993). Spatial sensitivity profiles of motion sensitive neurons in the locust brain. In K. Wiese et al. (Eds.), Sensory systems of arthropods (pp. 184–195). Basel: Birkhaeuser. Google Scholar
  51. Vahidi, A., & Eskandarian, A. (2003). Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Transactions on Intelligent Transportation Systems, 4(3), 143–153. CrossRefGoogle Scholar
  52. Webb, B., & Reeve, R. (2003). Reafferent or redundant: integration of phonotaxis and optomotor behaviour in crickets and robots. Adaptive Behaviour, 11(3), 137–158. CrossRefGoogle Scholar
  53. Wine, J. J., & Krasne, F. B. (1972). The organization of escape behavior in the crayfish. Journal of Experimental Biology, 56, 1–18. Google Scholar
  54. Yue, S., & Rind, F. C. (2005). A collision detection system for a mobile robot inspired by locust visual system. In IEEE int. conf. on robotics and automation, Spain, Barcelona, Apr. 18–21, 2005 (pp. 3843–3848). Google Scholar
  55. Yue, S., & Rind, F. C. (2006a). Collision detection in complex dynamic scenes using a LGMD based visual neural network with feature enhancement. IEEE Transactions on Neural Networks, 17(3), 705–716. CrossRefGoogle Scholar
  56. Yue, S., & Rind, F. C. (2006b). Visual motion pattern extraction and fusion for collision detection in complex dynamic scenes. Computer Vision and Image Understanding, 104(1), 48–60. CrossRefGoogle Scholar
  57. Yue, S., & Rind, F. C. (2007). A synthetic vision system using directionally selective motion detectors to recognize collision. Artificial Life, 13(2), 93–122. CrossRefGoogle Scholar
  58. Yue, S., & Rind, F. C. (2008a). Exploring postsynaptic organizations of bio-inspired DSNs for car collision detection. IEEE Transactions on Intelligent Transport Systems (under review). Google Scholar
  59. Yue, S., & Rind, F. C. (2008b). Competence comparison of collision sensitive visual neural systems during evolution in dynamic environments. Artificial Life (under review). Google Scholar
  60. Yue, S., Rind, F. C., Keil, M. S., Cuadri, J., & Stafford, R. (2006a). A bio-inspired visual collision detection mechanism for cars: optimisation of a model of a locust neuron to a novel environment. Neurocomputing, 69(13–15), 1591–1598. CrossRefGoogle Scholar
  61. Yue, S., Yamawaki, Y., Santer, R., & Rind, F. C. (2006b). Evolutionary search for the visual-motor model determining locusts escaping direction (Technical report). Google Scholar
  62. Zhurov, Y., & Brezina, V. (2006). Variability of motor neuron spike timing maintains and shapes contractions of the accessory radula closer muscle of Aplysia. The Journal of Neuroscience, 26(2), 7056–7070. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shigang Yue
    • 1
    • 2
    • 5
  • Roger D. Santer
    • 3
  • Yoshifumi Yamawaki
    • 4
  • F. Claire Rind
    • 5
  1. 1.School of Computer ScienceUniversity of LincolnLincolnUK
  2. 2.Brain Mapping Unit, Sir William Hardy Building, Downing SiteUniversity of CambridgeCambridgeUK
  3. 3.School of Biological SciencesUniversity of Nebraska–LincolnLincolnUSA
  4. 4.Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan
  5. 5.Ridley Building, School of Biology and PsychologyUniversity of Newcastle upon TyneNewcastleUK

Personalised recommendations