Advertisement

Autonomous Robots

, 27:409 | Cite as

Iterated D-SLAM map joining: evaluating its performance in terms of consistency, accuracy and efficiency

  • Shoudong HuangEmail author
  • Zhan Wang
  • Gamini Dissanayake
  • Udo Frese
Article

Abstract

This paper presents a new map joining algorithm and a set of metrics for evaluating the performance of mapping techniques.

The input to the new map joining algorithm is a sequence of local maps containing the feature positions and the final robot pose in a local frame of reference. The output is a global map containing the global positions of all the features but without any robot poses. The algorithm is built on the D-SLAM mapping algorithm (Wang et al. in Int. J. Robot. Res. 26(2):187–204, 2007) and uses iterations to improve the estimates in the map joining step. So it is called Iterated D-SLAM Map Joining (I-DMJ). When joining maps I-DMJ ignores the odometry information connecting successive maps. This is the key to I-DMJ efficiency, because it makes both the information matrix exactly sparse and the size of the state vector bounded by the number of features.

The paper proposes metrics for quantifying the performance of different mapping algorithms focusing on evaluating their consistency, accuracy and efficiency. The I-DMJ algorithm and a number of existing SLAM algorithms are evaluated using the proposed metrics. The simulation data sets and a preprocessed Victoria Park data set used in this paper are made available to enable interested researchers to compare their mapping algorithms with I-DMJ.

Keywords

SLAM Consistency Sparse matrix 

References

  1. Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics & Automation Magazine, 13(3), 108–117. CrossRefGoogle Scholar
  2. Bailey, T., Nieto, J., Guivant, J., Stevens, M., & Nebot, E. (2006). Consistency of the EKF-SLAM algorithm. In Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3562–3568). Beijing, China, October 9–15, 2006. Google Scholar
  3. Castellanos, J. A., Martinez-Cantin, R., Tardos, J. D., & Neira, J. (2007). Robocentric map joining: Improving the consistency of EKF-SLAM. Robotics and Autonomous Systems, 55, 21–29. CrossRefGoogle Scholar
  4. Dellaert, F., & Kaess, M. (2006). Square root SAM: Simultaneous localization and mapping via square root information smoothing. International Journal of Robotics Research, 25(12), 1181–1203. CrossRefGoogle Scholar
  5. Frese, U. (2006a). A discussion of simultaneous localization and mapping. Autonomous Robots, 20(1), 25–42. CrossRefGoogle Scholar
  6. Frese, U. (2006b). Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping. Autonomous Robots, 21(2), 103–122. CrossRefGoogle Scholar
  7. Frese, U. (2007). Efficient 6-DOF SLAM with Treemap as a generic backend. In Proceedings of 2007 IEEE international conference on robotics and automation (ICRA) (pp. 4814–4819). Rome, Italy, 10–14 April 2007. Google Scholar
  8. Grisetti, G., Rizzini, D. L., Stachniss, C., Olson, E., & Burgard, W. (2008). Online constraint network optimization for efficient maximum likelihood mapping. In Proceedings of 2008 IEEE international conference on robotics and automation (ICRA), Pasadena, California, May 19–23, 2008. Google Scholar
  9. Guivant, J. E., & Nebot, E. M. (2001). Optimization of the simultaneous localization and map building (SLAM) algorithm for real time implementation. IEEE Transactions on Robotics and Automation, 17, 242–257. CrossRefGoogle Scholar
  10. Hertzberg, C. (2008). A framework for sparse, non-linear least squares problems on manifolds. Master Thesis, University of Bremen, 2008. Google Scholar
  11. Huang, S., & Dissanayake, G. (2007). Convergence and consistency analysis for Extended Kalman Filter based SLAM. IEEE Transactions on Robotics, 23(5), 1036–1049. CrossRefGoogle Scholar
  12. Huang, S., Wang, Z., & Dissanayake, G. (2006). Mapping large-scale environments using relative position information among landmarks. In Proceedings of 2006 international conference on robotics and automation (pp. 2297–2302). Google Scholar
  13. Huang, G. P., Mourikis, A. I., & Roumeliotis, S. I. (2008a). Analysis and improvement of the consistency of Extended Kalman Filter-based SLAM. In Proc. IEEE international conference on robotics and automation (ICRA’08) (pp. 473–479). Pasadena, CA, May 19–23, 2008. Google Scholar
  14. Huang, S., Wang, Z., & Dissanayake, G. (2008b). Sparse local submap joining filter for building large-scale maps. IEEE Transactions on Robotics, 24(5), 1121–1130. CrossRefGoogle Scholar
  15. Huang, S., Wang, Z., Dissanayake, G., & Frese, U. (2008c). Iterated SLSJF: A sparse local submap joining algorithm with improved consistency. In 2008 Australiasan conference on robotics and automation. Canberra, December 2008. Available online: http://www.araa.asn.au/acra/acra2008/papers/pap102s1.pdf.
  16. Kaess, M., Ranganathan, A., & Dellaert, F. (2007). iSAM: Fast incremental smoothing and mapping with efficient data association. In Proceedings of 2007 IEEE international conference on robotics and automation (ICRA) (pp. 1670–1677). Rome, Italy, 10–14 April, 2007. Google Scholar
  17. Lipton, R. J., Rose, D. J., & Tarjan, R. E. (1979). Generalized nested dissection. SIAM Journal on Numerical Analysis, 16(2), 346–358. zbMATHCrossRefMathSciNetGoogle Scholar
  18. Ni, K., Steedly, D., & Dellaert, F. (2007). Tectonic SAM: Exact, out-of-core, submap-based SLAM. In Proceedings of 2007 IEEE international conference on robotics and automation (ICRA) (pp. 1678–1685). Rome, Italy, 10–14 April 2007. Google Scholar
  19. Paz, L. M., Pinies, P., Neira, J., & Tardos, J. D. (2005). Global localization in SLAM in bilinear time. In Proceedings of the 2005 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 655–661). Edmonton, Alberta, Canada, August 2–6, 2005. Google Scholar
  20. Paz, L. M., Guivant, J., Tardos, J. D., & Neira, J. (2007). Data association in O(n) for Divide and Conquer SLAM. In Proceedings of 2007 robotics: science and systems, June 27–30, Atlanta, USA. Google Scholar
  21. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes (2nd ed.). Cambridge: Cambridge University Press. Google Scholar
  22. Walter, M. R., Eustice, R. M., & Leonard, J. J. (2007). Exactly sparse Extended Information Filters for feature-based SLAM. International Journal of Robotics Research, 26(4), 335–359. CrossRefGoogle Scholar
  23. Wang, Z., Huang, S., & Dissanayake, G. (2007). D-SLAM: A decoupled solution to simultaneous localization and mapping. International Journal of Robotics Research, 26(2), 187–204. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shoudong Huang
    • 1
    Email author
  • Zhan Wang
    • 1
  • Gamini Dissanayake
    • 1
  • Udo Frese
    • 2
  1. 1.Faculty of Engineering and Information Technology, ARC Centre of Excellence for Autonomous SystemsThe University of TechnologySydneyAustralia
  2. 2.University of BremenBremenGermany

Personalised recommendations