Advertisement

Autonomous Robots

, 28:89 | Cite as

A framework for compliant physical interaction

The grasp meets the task
  • Mario Prats
  • Pedro J. Sanz
  • Angel P. del Pobil
Article

Abstract

Although the grasp-task interplay in our daily life is unquestionable, very little research has addressed this problem in robotics. In order to fill the gap between the grasp and the task, we adopt the most successful approaches to grasp and task specification, and extend them with additional elements that allow to define a grasp-task link. We propose a global sensor-based framework for the specification and robust control of physical interaction tasks, where the grasp and the task are jointly considered on the basis of the task frame formalism and the knowledge-based approach to grasping. A physical interaction task planner is also presented, based on the new concept of task-oriented hand preshapes. The planner focuses on manipulation of articulated parts in home environments, and is able to specify automatically all the elements of a physical interaction task required by the proposed framework. Finally, several applications are described, showing the versatility of the proposed approach, and its suitability for the fast implementation of robust physical interaction tasks in very different robotic systems.

Keywords

Compliant manipulation Grasp planing Sensor-based control 

References

  1. Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., & Dillmann, R. (2006). Armar-iii: An integrated humanoid platform for sensory-motor control. In IEEE-RAS international conference on humanoid robots (pp. 169–175). Google Scholar
  2. Baeten, J., Bruyninckx, H., & De Schutter, J. (2003). Integrated vision/force robotic servoing in the task frame formalism. International Journal of Robotics Research, 22(10–11), 941–954. Google Scholar
  3. Bard, C., Laugier, C., Milési-Bellier, C., Troccaz, J., Triggs, B., & Vercelli, G. (1995). Achieving dextrous grasping by integrating planning and vision-based sensing. International Journal of Robotics Research, 14(5), 445–464. CrossRefGoogle Scholar
  4. Bekey, G., Liu, H., Tomovic, R., & Karplus, W. (1993). Knowledge-based control of grasping in robot hands using heuristics from human motor skills. IEEE Transactions on Robotics and Automation, 9(6), 709–722. doi: 10.1109/70.265915. CrossRefGoogle Scholar
  5. Bicchi, A., & Kumar, V. (2000). Robotic grasping and contact: A review. In IEEE international conference on robotics and automation, San Francisco, CA (pp. 348–353). Google Scholar
  6. Borst, C., Fischer, M., & Hirzinger, G. (2004). Grasp planning: How to choose a suitable task wrench space. In IEEE international conference on robotics and automation, New Orleans, USA (pp. 319–325). Google Scholar
  7. Bruyninckx, H., & De Schutter, J. (1996). Specification of force-controlled actions in the ‘task frame formalism’: A synthesis. IEEE Transactions on Robotics and Automation, 12(5), 581–589. CrossRefGoogle Scholar
  8. Cutkosky, M., & Wright, P. (1986). Modeling manufacturing grips and correlations with the design of robotic hands. In IEEE international conference on robotics and automation, San Francisco, CA (Vol. 3, pp. 1533–1539). Google Scholar
  9. De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits, R., Aertbeliën, E., Claes, K., & Bruyninckx, H. (2007). Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. International Journal of Robotics Research, 26(5), 433–455. CrossRefGoogle Scholar
  10. Graf, B., Hans, M., & Schraft, R. (2004). Care-o-bot ii-development of a next generation robotic home assistant. Autonomous Robots, 16(2), 193–205. CrossRefGoogle Scholar
  11. Haschke, R., Steil, J., Steuwer, I., & Ritter, H. (2005). Task-oriented quality measures for dextrous grasping. In IEEE conf. on computational intelligence in robotics and automation, Espoo, Finland (pp. 689–694). Google Scholar
  12. Huebner, K., & Kragic, D. (2008). Selection of robot pre-grasps using box-based shape approximation. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1765–1770). Google Scholar
  13. Huebner, K., Ruthotto, S., & Kragic, D. (2008). Minimum volume bounding box decomposition for shape approximation in robot grasping. In IEEE international conference on robotics and automation (pp. 1628–1633). Google Scholar
  14. Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata, M., Akachi, K., & Isozumi, T. (2004). Humanoid robot hrp-2. In IEEE international conference on robotics and automation, New Orleans, USA (Vol. 2, pp. 1083–1090). Google Scholar
  15. Katz, D., & Brock, O. (2008). Manipulating articulated objects with interactive perception. In IEEE international conference on robotics and automation, Pasadena, USA (pp. 272–277). Google Scholar
  16. Kemp, C. C., Anderson, C. D., Nguyen, H., Trevor, A. J., & Xu, Z. (2008). A point-and-click interface for the real world: laser designation of objects for mobile manipulation. In ACM/IEEE international conference on human robot interaction, New York, NY, USA (pp. 241–248). Google Scholar
  17. Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, 3(1), 43–53. CrossRefGoogle Scholar
  18. Latombe, J. C. (1991). Robot motion planning. Dordrecht: Kluwer Academic. Google Scholar
  19. Lee, S., Lee, S., Lee, J., Moon, D., Kim, E., & Seo, J. (2007). Robust recognition and pose estimation of 3D objects based on evidence fusion in a sequence of images. In IEEE International Conference on Robotics and Automation, Rome, Italy (pp. 3773–3779). Google Scholar
  20. Li, Z., & Sastry, S. (1987). Task oriented optimal grasping by multifingered robot hands. In IEEE international conference on robotics and automation, Raleigh, North Carolina (Vol. 4, pp. 389–394). Google Scholar
  21. Lyons, D. (1985). A simple set of grasps for a dextrous hand. In IEEE International Conference on Robotics and Automation (Vol. 2, pp. 588–593). Google Scholar
  22. Mackenzie, C., & Iberall, T. (1994). The grasping hand. Amsterdam: North-Holland. Google Scholar
  23. Marrone, F., Raimondi, F., & Strobel, M. (2002). Compliant interaction of a domestic service robot with a human and the environment. In 33rd int. symposium on robotics, Stockholm, Sweden (pp. 7–11). Google Scholar
  24. Mason, M. (1981). Compliance and force control for computer-controlled manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 11(6), 418–432. CrossRefGoogle Scholar
  25. Mezouar, Y., Prats, M., & Martinet, P. (2007). External hybrid vision/force control. In International conference on advanced robotics, Jeju, Korea (pp. 170–175). Google Scholar
  26. Miller, A. T., & Allen, P. K. (1999). Examples of 3D grasp quality computations. In IEEE international conference on robotics and automation, Detroit, Michigan (pp. 1240–1246). Google Scholar
  27. Miller, A. T., Knoop, S., Christensen, H. I., & Allen, P. K. (2003). Automatic grasp planning using shape primitives. In IEEE international conference on robotics and automation, Taipei, Taiwan (pp. 1824–1829). Google Scholar
  28. Morales, A., Asfour, T., Azad, P., Knoop, S., & Dillmann, R. (2006). Integrated grasp planning and visual object localization for a humanoid robot with five-fingered hands. In IEEE/RSJ international conference on intelligent robots and systems, Beijing, China (pp. 5663–5668). Google Scholar
  29. Napier, J. (1956). The prehensile movements of the human hand. Journal of Bone and Joint Surgery, 38-B(4), 902–13. Google Scholar
  30. Nguyen, H., & Kemp, C. C. (2008). Bio-inspired assistive robotics: Service dogs as a model for human-robot interaction and mobile manipulation. In 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (pp. 542–549), doi: 10.1109/BIOROB.2008.4762910.
  31. Niemeyer, G., & Slotine, J. J. (1997). A simple strategy for opening an unknown door. In IEEE international conference on robotics and automation, Albuquerque, NM, USA (Vol. 2, pp. 1448–1453). Google Scholar
  32. Okamura, A. M., Smaby, N., & Cutkosky, M. R. (2000). An overview of dexterous manipulation. In IEEE international conference on robotics and automation, San Francisco, CA, USA (pp. 255–262). Google Scholar
  33. Ott, C., Bäuml, B., Borst, C., & Hirzinger, G. (2005). Employing Cartesian impedance control for the opening of a door: A case study in mobile manipulation. In IEEE/RSJ international conference on intelligent robots and systems workshop on mobile manipulators: Basic techniques, new trends & applications, Edmonton, Canada. Google Scholar
  34. Petersson, L., Austin, D., & Kragic, D. (2000). High-level control of a mobile manipulator for door opening. In IEEE/RSJ international conference on intelligent robots and systems, Takamatsu, Kagawa, Japan (Vol. 3, pp. 2333–2338). Google Scholar
  35. Petrovskaya, A., & Ng, A. (2007). Probabilistic mobile manipulation in dynamic environments with application to opening doors. In Int. joint conf. on artificial intelligence, Hyderabad, India. Google Scholar
  36. Prats, M., del Pobil, A. P., & Sanz, P. (2007a). Task-oriented grasping using hand preshapes and task frames. In IEEE international conference on robotics and automation, Rome, Italy (pp. 1794–1799). Google Scholar
  37. Prats, M., Sanz, P. J., del Pobil, A. P., Martínez, E., & Marín, R. (2007b). Towards multipurpose autonomous manipulation with the UJI service robot. ROBOTICA, 25(2), 245–256. CrossRefGoogle Scholar
  38. Prats, M., Martinet, P., del Pobil, A. P., & Lee, S. (2008a). Robotic execution of everyday tasks by means of external vision/force control. Intelligent Service Robotics, 1(3), 253–266. CrossRefGoogle Scholar
  39. Prats, M., Martinet, P., Sanz, P. J., & Lee, S. (2008b). Compliant physical interaction based on external vision-force control and tactile-force combination. In IEEE international conference on multisensor fusion and integration, Seoul, South Korea (pp. 405–410). Google Scholar
  40. Prats, M., Wieland, S., Asfour, T., del Pobil, A. P., & Dillmann, R. (2008c). Compliant interaction in household environments by the armar-iii humanoid robot. In IEEE-RAS international conference on humanoid robots, Daejeon, South Korea (pp. 475–480). Google Scholar
  41. Prats, M., Sanz, P. J., & del Pobil, A. P. (2009). Vision-tactile-force integration and robot physical interaction. In IEEE international conference on robotics and automation, Kobe, Japan (pp. 3975–3980). Google Scholar
  42. Quigley, M., Berger, E., & Ng, A. Y. (2007). Stair: Hardware and software architecture. In AAAI 2007 robotics workshop. Google Scholar
  43. Raibert, M., & Craig, J. (1981). Hybrid position/force control of manipulators. ASME Journal of Dynamic Systems, Measurement and Control, 102(2), 126–133. CrossRefGoogle Scholar
  44. Saxena, A., Driemeyer, J., & Ng, A. Y. (2008). Robotic grasping of novel objects using vision. International Journal of Robotics Research, 27(2), 157–173. CrossRefGoogle Scholar
  45. Schlesinger, G. (1919). Der mechanische Aufbau der kunstlichen Glieder in Ersatzglieder und Arbeitshilfen. Berlin: Springer. Google Scholar
  46. Stansfield, S. (1991). Robotic grasping of unknown objects: A knowledge-based approach. International Journal of Robotics Research, 10(4), 314–326. CrossRefGoogle Scholar
  47. Thomas, U., Finkemeyer, B., Kröger, T., & Wahl, F. (2003). Error-tolerant execution of complex robot tasks based on skill primitives. In IEEE international conference on robotics and automation, Taipei, Taiwan (Vol. 3, pp. 3069–3075). Google Scholar
  48. Wren, D., & Fisher, R. (1995). Dextrous hand grasping strategies using preshapes and digit trajectories. In IEEE international conference on systems, man and cybernetics, Vancouver, BC, Canada (Vol. 1, pp. 910–915). Google Scholar
  49. Wyrobek, K., Berger, E., Van der Loos, H., & Salisbury, J. (2008). Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot. In IEEE international conference on robotics and automation, Pasadena, California (pp. 2165–2170). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mario Prats
    • 1
  • Pedro J. Sanz
    • 1
  • Angel P. del Pobil
    • 1
    • 2
  1. 1.Computer Science and Engineering DepartmentJaume-I UniversityCastellónSpain
  2. 2.Department of Interaction ScienceSungkyunkwan UniversitySeoulSouth Korea

Personalised recommendations