Advertisement

Autonomous Robots

, 28:77 | Cite as

Pivoting based manipulation by a humanoid robot

  • Eiichi YoshidaEmail author
  • Mathieu Poirier
  • Jean-Paul Laumond
  • Oussama Kanoun
  • Florent Lamiraux
  • Rachid Alami
  • Kazuhito Yokoi
Article

Abstract

In this paper we address whole-body manipulation of bulky objects by a humanoid robot. We adopt a “pivoting” manipulation method that allows the humanoid to displace an object without lifting, but by the support of the ground contact. First, the small-time controllability of pivoting is demonstrated. On its basis, an algorithm for collision-free pivoting motion planning is established taking into account the naturalness of motion as nonholonomic constraints. Finally, we present a whole-body motion generation method by a humanoid robot, which is verified by experiments.

Keywords

Manipulation Humanoid Motion planning Whole-body motion 

Supplementary material

Below is the link to the electronic supplementary material.

Below is the link to the electronic supplementary material.

Below is the link to the electronic supplementary material.

Below is the link to the electronic supplementary material.

References

  1. Aiyama, Y., Inaba, M., & Inoue, H. (1993). Pivoting: A new method of graspless manipulation of object by robot fingers. In Proc. 1993 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 136–143). Google Scholar
  2. Arechavaleta, G., Laumond, J. P., Hicheur, H., & Berthoz, A. (2008). An optimality principle governing human walking. IEEE Transactions on Robotics, 24(1), 5–14. CrossRefGoogle Scholar
  3. Arisumi, H., Chardonnet, J. R., Kheddar, A., & Yokoi, K. (2007). Dynamic lifting motion of humanoid robots. In Proc. of IEEE int. conf. on robotics and automation (pp. 2661–2667). Google Scholar
  4. Baerlocher, P., & Boulic, R. (2004). An inverse kinematics architecture enforcing and arbitrary number of strict priority levels. The Visual Computer, 20, 402–417. CrossRefGoogle Scholar
  5. Bicchi, A., Chitour, Y., & Marigo, A. (2004). Reachability and steering of rolling polyhedra: a case study in discrete nonholonomy. IEEE Transactions on Automatic Control, 49(5), 710–726. CrossRefMathSciNetGoogle Scholar
  6. Brock, O., Kuffner, J., & Xiao, J. (2008). Motion for manipulation tasks. In B. Siciliano & O. Khatib (Eds.), Handbook of robotics (pp. 615–645). Berlin: Springer. CrossRefGoogle Scholar
  7. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., & Thrun, S. (2006). Principles of robot motion: theory, algorithms, and implementation. Cambridge: MIT Press. Google Scholar
  8. Harada, H., Kajita, S., Kanehiro, F., Fujiwara, K., Kaneko, K., Yokoi, K., & Hirukawa, H. (2004). Real-time planning of humanoid robot’s gait for force controlled manipulation. In Proc. 2004 IEEE int. conf. on robotics and automation (pp. 616–622). Google Scholar
  9. Harada, H., Kajita, S., Saito, H., Morisawa, M., Kanehiro, F., Fujiwara, K., Kaneko, K., & Hirukawa, H. (2005). A humanoid robot carrying a heavy object. In Proc. 2005 IEEE int. conf. on robotics and automation (pp. 1712–1717). Google Scholar
  10. Hsu, D., Latombe, J. C., & Sorkin, S. (1999). Placing a robot manipulator amid obstacles for optimized execution. In Proc. 1999 int. symp. on assembly and task planning (pp. 280–285). Google Scholar
  11. Hwang, Y., Konno, A., & Uchiyama, M. (2003). Whole body cooperative tasks and static stability evaluations for a humanoid robot. In Proc. 2003 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1901–1906). Google Scholar
  12. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In Proc. 2003 IEEE int. conf. on robotics and automation (pp. 1620–1626). Google Scholar
  13. Kanehiro, F., Hirukawa, H., & Kajita, S. (2004). OpenHRP: Open architecture humanoid robotics platform. International Journal of Robotics Research, 23(2), 155–165. CrossRefGoogle Scholar
  14. Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T. M Hirata, K.A., & Isozumi, T. (2004). The humanoid robot HRP-2. In Proc. 2004 IEEE int. conf. on robotics and automation (pp. 1083–1090). Google Scholar
  15. Laumonded, J. P. (Ed.) (1998). Robot motion planning and control. Lectures notes in control and information sciences (Vol. 229). Berlin: Springer. Google Scholar
  16. Laumond, J. P. (2006). Kineo CAM: a success story of motion planning algorithms. IEEE Robotics & Automation Magazine, 13(2), 90–93. CrossRefGoogle Scholar
  17. LaValle, S. (2006). Planning algorithm. Cambridge: Cambridge University Press. Google Scholar
  18. Maeda, Y., Nakamura., T., & Arai, T. (2004). Motion planning of robot fingertips for graspless manipulation. In Proc. 2004 IEEE int. conf. on robotics and automation (pp. 2951–2956). Google Scholar
  19. Nakamura, Y. (1991). Advanced robotics: redundancy and optimization. Boston: Addison-Wesley Longman Publishing. Google Scholar
  20. Okada, K., Haneda, A., Nakai, H., Inaba, M., & Inoue, H. (2004). Environment manipulatio planner for humanoid robots using task graph that generates action sequence. In Proc. 2004 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1174–1179). Google Scholar
  21. Reeds, J. A., & Shepp, R. A. (1990). Optimal paths for a car that goes both forwards and backwards. Pacific Journal of Mathematics, 145(2), 367–393. MathSciNetGoogle Scholar
  22. Siciliano, B., & Slotine, J. J. E. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In Proc. IEEE int. conf. on advanced robotics (pp. 1211–1216). Google Scholar
  23. Simeon, T., Laumond, J. P., & Nissoux, C. (2000). Visibility-based probabilistic roadmaps for motion planning. Advanced Robotics, 14(6), 477–494. CrossRefGoogle Scholar
  24. Soueres, P., & Laumond, J. P. (1996). Shortest paths synthesis for a car-like robot. IEEE Transactions on Automatic Control, 41(5), 672–688. zbMATHCrossRefMathSciNetGoogle Scholar
  25. Stilman, M., Nishiwaki, K., Kagami, S., & Kuffner, J. (2006). Planning and executing navigation among movable obstacles. In Proc. 2003 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 820–826). Google Scholar
  26. Sugihara, T., Nakamura, Y., & Inoue, H. (2002). Realtime humanoid motion generation through zmp manipulation based on inverted pendulum control. In Proc. 2002 IEEE int. conf. on robotics and automation (pp. 1404–1409). Google Scholar
  27. Sussmann, H. (1982). Lie brackets, real analyticity and geometric control. In R. Brockett, R. Millman, & H. Sussmann (Eds.), Progress in mathematics : Vol. 27. Differential geometric control theory (pp. 1–116). Birkhauser: Michigan Technological University. Google Scholar
  28. Takubo, T., Inoue, K., Sakata, K., Mae, Y., & Arai, T. (2004). Mobile manipulation of humanoid robots—control method for com position with external force. In Proc. 2004 IEEE/RSJ int. conf. on intelligent robots and systems (pp. 1180–1185). Google Scholar
  29. Yoshida, E., Blazevic, P., Hugel, V., Yokoi, K., & Harada, K. (2006a). Pivoting a large object: whole-body manipulation by a humanoid robot. Journal of Applied Bionics and Biomechanics, 3(3), 227–235. CrossRefGoogle Scholar
  30. Yoshida, E., Kanoun, O., Esteves, C., Laumond, J. P., & Yokoi, K. (2006b). Task-driven support polygon reshaping for humanoids. In Proc. 2006 IEEE-RAS int. conf. on humanoid robots (pp. 827–832). Google Scholar
  31. Yoshida, E., Esteves, C., Belousov, I., Laumond, J. P., Sakaguchi, T., & Yokoi, K. (2008). Planning 3D collision-free dynamic robotic motion through iterative reshaping. IEEE Transactions on Robotics, 24(5), 1186–1198. CrossRefGoogle Scholar
  32. Yoshida, E., Poirier, M., Laumond, J. P., Kanoun, O., Lamiraux, F., Alami, R., & Yokoi, K. (2009). Regrasp planning for pivoting manipulation by a humanoid robot. In Proc. 2009 IEEE int. conf. on robotics and automation (pp. 2467–2472). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Eiichi Yoshida
    • 1
    Email author
  • Mathieu Poirier
    • 2
  • Jean-Paul Laumond
    • 2
  • Oussama Kanoun
    • 2
  • Florent Lamiraux
    • 2
  • Rachid Alami
    • 2
  • Kazuhito Yokoi
    • 3
  1. 1.CNRS-AIST JRL (Joint Robotics Laboratory), UMI3218/CRTNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.LAAS-CNRSUniversity of Toulouse; UPS, INSA, INP, ISAE; LAASToulouseFrance
  3. 3.Humanoid Research Group, Intelligent Systems Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations