Autonomous Robots

, 28:131 | Cite as

An autonomous mobile manipulator for assembly tasks

  • Brad Hamner
  • Seth Koterba
  • Jane Shi
  • Reid Simmons
  • Sanjiv Singh
Article

Abstract

The fundamental difference between autonomous robotic assembly and traditional hard automation, currently utilized in large-scale manufacturing production, lies in the specific approaches used in locating, acquiring, manipulating, aligning, and assembling parts. An autonomous robotic assembly manipulator offers high flexibility and high capability to deal with the inherent system uncertainties, unknowns, and exceptions. This paper presents an autonomous mobile manipulator that effectively overcomes inherent system uncertainties and exceptions by utilizing control strategies that employ coordinated control, combine visual and force servoing, and incorporate sophisticated reactive task control. The mobile manipulation system has been demonstrated experimentally to achieve high reliability for a “peg-in-hole” type of insertion assembly task that is commonly encountered in automotive wiring harness assembly.

Keywords

Mobile manipulation Coordinated control Constrained motion Task architecture 

References

  1. Bar-Itzhack, Y. (2000). New method for extracting the quaternion from a rotation matrix. AIAA Journal of Guidance, Control, and Dynamics, 23(6), 1085–1087. CrossRefGoogle Scholar
  2. Bischoff, R. (1997). HERMES—a humanoid manipulator for service tasks. In Proceedings of the international conference on field and service robotics, Canberra, December, 1997. Google Scholar
  3. Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D. P., & Slack, M. G. (1997). Experiences with an architecture for intelligent, reactive agents. Journal of Experimental and Theoretical Artificial Intelligence, 9(1). Google Scholar
  4. Brock, O., & Khatib, O. (2002). Elastic strips: a framework for motion generation in human environments. The International Journal of Robotics Research, 21(12), 1031–1052. CrossRefGoogle Scholar
  5. Chiaverini, S. (1997). Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Transactions on Robotics and Automation, 13, 398–410. CrossRefGoogle Scholar
  6. De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits, R., Aerbeliën, E., Claes, K., & Bruyninckx, H. (2007). Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. International Journal of Robotics Research, 26(5), 433–455. CrossRefGoogle Scholar
  7. Dillman, R., Ehrenmann, M., Steinhaus, P., Rogalla, O., & Zollner, R. (2002). Human friendly programming of humanoid robots—the German collaborative research center. In Proceedings of the IEEE international workshop of robot and human interactive communication. Google Scholar
  8. Donald, B. R. (1990). Planning multi-step error detection and recovery strategies. The International Journal of Robotics Research, 892–897. Google Scholar
  9. Duchaine, V., & Gosselin, C. (2007). General model of human-robot cooperation using a novel velocity based variable impedance control. In Proceedings of the second joint EuroHaptics conference and symposium on haptic interfaces for virtual environment and teleoperator systems. Google Scholar
  10. Edsinger, A., & Kemp, C. (2006). Manipulation in human environments. In Proceedings of the IEEE/RSJ international conference on humanoid robotics. Google Scholar
  11. Fiala, M. (2005). ARTag, a fiducial marker system using digital techniques. IEEE Computer Vision and Pattern Recognition, 2, 590–596. Google Scholar
  12. Holmberg, R., & Khatib, O. (2000). Development and control of a holonomic mobile robot for mobile manipulation tasks. The International Journal of Robotics Research, 19(11), 1066–1074. CrossRefGoogle Scholar
  13. Kim, J., Chung, W. K., Youm, Y., & Lee, B. H. (2002). Real-time ZMP compensation method using null motion for mobile manipulators. In Proceedings of the IEEE international conference on robotics and automation, Washington DC. Google Scholar
  14. Kragic, D., Crinier, S., Brunn, D., & Christensen, H. I. (2003). Vision and tactile sensing for real world tasks. In Proceedings of the IEEE international conference on robotics and automation, Taipei, Taiwan. Google Scholar
  15. Mason, M. (1979). Compliance and force control for computer controlled manipulators. MIT Artificial Intelligence Laboratory Memo 515, April 1979. Google Scholar
  16. Mills, J., & Goldenberg, A. (1989). Force and position control of manipulators during constrained motion tasks. IEEE Transactions on Robotics and Automation, 5(1), 30–46. CrossRefGoogle Scholar
  17. Nakamura, Y., & Hanafusa, H. (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control. Journal of Dynamic Systems, Measurement, and Control, 108, 163–171. MATHCrossRefGoogle Scholar
  18. Peshkin, M. A., Colgate, J. E., Akella, P., & Wannasuphoprasit, W. (2000). Cobots in materials handling, In M. Cutkosky, R. Howe, K. Salisbury & M. Srinivasan (Eds.), Human and Machine Haptics. Cambridge: MIT Press. Google Scholar
  19. Petersson, L., Jensfelt, P., Tell, D., Strandberg, M., Kragic, D., & Christensen, H. I. (2002). Systems integration for real-world manipulation tasks. In Proceedings of the IEEE international conference on robots and automation. Google Scholar
  20. Raibert, M. H., & Craig, J. J. (1981). Hybrid position/force control of manipulators. Transactions of ASME, Journal DSMC, 103, 126–133. Google Scholar
  21. Sciavicco, L., & Siciliano, B. (2005). Modeling and control of robot manipulators (2nd ed.). London: Springer. Google Scholar
  22. Schaal, S. (2007). The New Robotics—towards human-centered machines. HFSP Journal, 1(2), 115–126. CrossRefGoogle Scholar
  23. Se, S., Lowe, D., & Little, J. (2005). Vision-based global localization and mapping for mobile robots. IEEE Transactions on Robotics, 21(3), 364–375. CrossRefGoogle Scholar
  24. Sellner, B., Heger, F. W., Hiatt, L. M., Simmons, R., & Singh, S. (2006). Coordinated multi-agent teams and sliding autonomy for large-scale assembly. Proceedings of the IEEE, Special Issue on Multi-Agent Systems, 94(7), 1425–1444. Google Scholar
  25. Shin, D., Hamner, B., Singh, S., & Hwangbo, M. (2003). Motion planning for a mobile manipulator with imprecise locomotion. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (pp. 847–853). Google Scholar
  26. Simmons, R., & Whelan, G. (1997). Visualization tools for validating software of autonomous spacecraft. In Proceedings of international symposium on artificial intelligence, robotics and automation in space, Tokyo, Japan, July 1997. Google Scholar
  27. Simmons, R., & Apfelbaum, D. (1998). A task description language for robot control. In Proceedings of conference on intelligent robotics and systems, Vancouver, Canada, October 1998. Google Scholar
  28. Wampler, C. W. (1986). Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Transactions on Systems, Man, and Cybernetics, SMC-16, 93–101. CrossRefGoogle Scholar
  29. Whitney, D. E. (1969). Resolved motion rate control of manipulators and human prostheses. IEEE Transactions on Man-Machine System, MMS-IO, 47–53. CrossRefGoogle Scholar
  30. Yamamoto, Y., & Yun, X. (1992). Coordinating locomotion and manipulation of a mobile manipulator. In Proceedings of the 31st IEEE conference on decision and control (Vol. 3, pp. 2643–2648), Tucson, AZ, USA. Google Scholar
  31. Yoshikawa, T. (1987). Dynamic hybrid position/force control of robot manipulators—description of hand constraints and calculation of joint driving force. IEEE Journal of Robotics and Automation, RA-3(5), 386–392. CrossRefGoogle Scholar
  32. Yuan, J. S. (1988). Closed-loop manipulator control using quaternion feedback. IEEE Journal of Robotics and Automation, 4(4), 434–440. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Brad Hamner
    • 1
  • Seth Koterba
    • 1
  • Jane Shi
    • 2
  • Reid Simmons
    • 1
  • Sanjiv Singh
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Research and Development Center, Manufacturing Systems Research Lab.General Motors CompanyWarrenUSA

Personalised recommendations